Suppr超能文献

通过图卷积神经网络利用分子网络信息预测乳腺癌转移事件

Utilizing Molecular Network Information via Graph Convolutional Neural Networks to Predict Metastatic Event in Breast Cancer.

作者信息

Chereda Hryhorii, Bleckmann Annalen, Kramer Frank, Leha Andreas, Beissbarth Tim

机构信息

Medical Bioinformatics, University Medical Center Göttingen.

Hematology & Medical Oncology, University Medical Center Göttingen.

出版信息

Stud Health Technol Inform. 2019 Sep 3;267:181-186. doi: 10.3233/SHTI190824.

Abstract

Gene expression data is commonly available in cancer research and provides a snapshot of the molecular status of a specific tumor tissue. This high-dimensional data can be analyzed for diagnoses, prognoses, and to suggest treatment options. Machine learning based methods are widely used for such analysis. Recently, a set of deep learning techniques was successfully applied in different domains including bioinformatics. One of these prominent techniques are convolutional neural networks (CNN). Currently, CNNs are extending to non-Euclidean domains like graphs. Molecular networks are commonly represented as graphs detailing interactions between molecules. Gene expression data can be assigned to the vertices of these graphs, and the edges can depict interactions, regulations and signal flow. In other words, gene expression data can be structured by utilizing molecular network information as prior knowledge. Here, we applied graph CNN to gene expression data of breast cancer patients to predict the occurrence of metastatic events. To structure the data we utilized a protein-protein interaction network. We show that the graph CNN exploiting the prior knowledge is able to provide classification improvements for the prediction of metastatic events compared to existing methods.

摘要

基因表达数据在癌症研究中普遍可得,并提供特定肿瘤组织分子状态的快照。这种高维数据可用于诊断、预后分析以及提出治疗方案。基于机器学习的方法广泛用于此类分析。最近,一组深度学习技术成功应用于包括生物信息学在内的不同领域。其中一种突出的技术是卷积神经网络(CNN)。目前,CNN正在扩展到非欧几里得领域,如图形。分子网络通常表示为详细描述分子间相互作用的图形。基因表达数据可以分配给这些图形的顶点,边可以描绘相互作用、调控和信号流。换句话说,基因表达数据可以利用分子网络信息作为先验知识进行结构化。在此,我们将图卷积神经网络应用于乳腺癌患者的基因表达数据,以预测转移事件的发生。为了构建数据,我们利用了蛋白质-蛋白质相互作用网络。我们表明,与现有方法相比,利用先验知识的图卷积神经网络能够在转移事件预测中提供分类改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验