Department of Neurology, University of Campinas, Campinas, Brazil.
Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
Brain Behav. 2019 Oct;9(10):e01363. doi: 10.1002/brb3.1363. Epub 2019 Sep 4.
The increasing use of large sample sizes for population and personalized medicine requires high-throughput tools for imaging processing that can handle large amounts of data with diverse image modalities, perform a biologically meaningful information reduction, and result in comprehensive quantification. Exploring the reproducibility of these tools reveals the specific strengths and weaknesses that heavily influence the interpretation of results, contributing to transparence in science.
We tested-retested the reproducibility of MRICloud, a free automated method for whole-brain, multimodal MRI segmentation and quantification, on two public, independent datasets of healthy adults.
The reproducibility was extremely high for T1-volumetric analysis, high for diffusion tensor images (DTI) (however, regionally variable), and low for resting-state fMRI.
In general, the reproducibility of the different modalities was slightly superior to that of widely used software. This analysis serves as a normative reference for planning samples and for the interpretation of structure-based MRI studies.
随着大样本在人群和个性化医学中的应用不断增加,需要高通量的成像处理工具来处理具有多种成像方式的大量数据,进行具有生物学意义的信息简化,并实现全面的量化。探索这些工具的可重复性揭示了特定的优缺点,这些优缺点会严重影响结果的解释,从而提高科学的透明度。
我们在两个独立的健康成年人公共数据集上对 MRICloud 进行了重复性测试,这是一种用于全脑、多模态 MRI 分割和量化的免费自动化方法。
T1 容积分析的可重复性极高,扩散张量图像(DTI)的可重复性较高(但存在区域性差异),静息状态 fMRI 的可重复性较低。
总体而言,不同模态的可重复性略优于广泛使用的软件。这项分析为基于结构的 MRI 研究的样本规划和解释提供了一个规范参考。