He Xing, Ji Jun, Liu Kaixin, Gao Zengliang, Liu Yi
Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou, 310023, China.
College of Computer Science and Technology, Qingdao University, Qingdao, 266071, China.
Sensors (Basel). 2019 Sep 3;19(17):3814. doi: 10.3390/s19173814.
The silicon content in industrial blast furnaces is difficult to measure directly online. Traditional soft sensors do not efficiently utilize useful information hidden in process variables. In this work, bagging local semi-supervised models (BLSM) for online silicon content prediction are proposed. They integrate the bagging strategy, the just-in-time-learning manner, and the semi-supervised extreme learning machine into a unified soft sensing framework. With the online semi-supervised learning method, the valuable information hidden in unlabeled data can be explored and absorbed into the prediction model. The application results to an industrial blast furnace show that BLSM has better prediction performance compared with other supervised soft sensors.
工业高炉中的硅含量难以直接在线测量。传统的软传感器无法有效利用隐藏在过程变量中的有用信息。在这项工作中,提出了用于在线硅含量预测的装袋局部半监督模型(BLSM)。它们将装袋策略、即时学习方式和半监督极限学习机集成到一个统一的软传感框架中。通过在线半监督学习方法,可以挖掘隐藏在未标记数据中的有价值信息,并将其吸收到预测模型中。在工业高炉上的应用结果表明,与其他监督软传感器相比,BLSM具有更好的预测性能。