Suppr超能文献

基于半监督神经网络的异常识别与筛选及成矿预测研究。

Research on Anomaly Identification and Screening and Metallogenic Prediction Based on Semisupervised Neural Network.

机构信息

Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education, Lushan Road, Changsha 410083, China.

Key Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Lushan Road, Changsha 410083, China.

出版信息

Comput Intell Neurosci. 2022 Jul 21;2022:8745036. doi: 10.1155/2022/8745036. eCollection 2022.

Abstract

This paper firstly introduces the background of the research on neural network and anomaly identification screening and mineralization prediction under semisupervised learning, then introduces supervised learning, semisupervised learning, unsupervised learning, and reinforcement learning, analyzes and compares their advantages and disadvantages, and concludes that unsupervised learning is the best way to process the data. In the research method, this paper classifies the obtained geochemical data by using semisupervised learning and then trains the obtained samples using the convolutional neural network model to obtain the mineralization prediction model and check its correctness, which finally provides the direction for the subsequent mineralization prediction research.

摘要

本文首先介绍了神经网络的研究背景以及在半监督学习下的异常识别筛选和矿化预测,然后介绍了监督学习、半监督学习、无监督学习和强化学习,分析和比较了它们的优缺点,得出无监督学习是处理数据的最佳方式。在研究方法中,本文使用半监督学习对获得的地球化学数据进行分类,然后使用卷积神经网络模型对获得的样本进行训练,得到矿化预测模型,并检查其正确性,最终为后续的矿化预测研究提供了方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c115/9334094/bbefcf9610ff/CIN2022-8745036.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验