Suppr超能文献

基于集成高斯过程回归的分层采样策略的发酵过程智能软传感器设计。

Smart Soft Sensor Design with Hierarchical Sampling Strategy of Ensemble Gaussian Process Regression for Fermentation Processes.

机构信息

Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education, Jiangnan University, Wuxi 214122, China.

School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China.

出版信息

Sensors (Basel). 2020 Mar 31;20(7):1957. doi: 10.3390/s20071957.

Abstract

Accurate and real-time quality prediction to realize the optimal process control at a competitive price is an important issue in Industrial 4.0. This paper shows a successful engineering application of how smart soft sensors can be combined with machine learning technique to significantly save human resources and improve performance under complex industrial conditions. Ensemble learning based soft sensors succeed in capturing complex nonlinearities, frequent dynamic changes, as well as time-varying characteristics in industrial processes. However, local model regions under traditional ensemble modelling methods are highly dependent on labeled data samples and, hence, their prediction accuracy might get affected when labeled samples are limited. A novel active learning (AL) framework upon the ensemble Gaussian process regression (GPR) model is proposed for smart soft sensor design in order to overcome this drawback. Firstly, to iteratively select the most informative unlabeled samples for labeling with hierarchical sampling based AL strategy, to then apply Gaussian mixture model (GMM) technique to autonomously identify operation phases, to further construct local GPR models without human involvement, and finally to integrate the base predictors by applying the Bayesian fusion strategy. Comparative studies for the penicillin fermentation process demonstrate the reliability and superiority of the recommended smart soft sensing. The cost of human annotation can be dramatically reduced by at least half while the prediction performance simultaneously keeps high.

摘要

在工业 4.0 中,以有竞争力的价格实现准确和实时的质量预测,以实现最佳的过程控制,是一个重要问题。本文展示了智能软传感器如何结合机器学习技术,在复杂的工业条件下,如何显著节省人力资源和提高性能的成功工程应用。基于集成学习的软传感器成功地捕捉了工业过程中的复杂非线性、频繁的动态变化以及时变特性。然而,传统集成建模方法下的局部模型区域高度依赖于标记数据样本,因此,当标记样本有限时,其预测精度可能会受到影响。为了克服这一缺点,提出了一种基于集成高斯过程回归(GPR)模型的新的主动学习(AL)框架,用于智能软传感器设计。首先,采用基于分层抽样的 AL 策略,迭代选择最具信息量的未标记样本进行标记;然后应用高斯混合模型(GMM)技术自动识别操作阶段;进一步在无需人工干预的情况下构建局部 GPR 模型;最后通过应用贝叶斯融合策略集成基础预测器。青霉素发酵过程的对比研究证明了所推荐的智能软传感的可靠性和优越性。通过至少减少一半的人工注释成本,同时保持高预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53fc/7181045/a5fe7d4aa9e5/sensors-20-01957-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验