Suppr超能文献

具有深度核学习的稳健软传感器,用于橡胶混炼过程中的质量预测。

Robust Soft Sensor with Deep Kernel Learning for Quality Prediction in Rubber Mixing Processes.

机构信息

Institute of Process Equipment and Control Engineering, Zhejiang University of Technology, Hangzhou 310023, China.

Shanghai Customs, Shanghai 200120, China.

出版信息

Sensors (Basel). 2020 Jan 27;20(3):695. doi: 10.3390/s20030695.

Abstract

Although several data-driven soft sensors are available, online reliable prediction of the Mooney viscosity in industrial rubber mixing processes is still a challenging task. A robust semi-supervised soft sensor, called ensemble deep correntropy kernel regression (EDCKR), is proposed. It integrates the ensemble strategy, deep brief network (DBN), and correntropy kernel regression (CKR) into a unified soft sensing framework. The multilevel DBN-based unsupervised learning stage extracts useful information from all secondary variables. Sequentially, a supervised CKR model is built to explore the relationship between the extracted features and the Mooney viscosity values. Without cumbersome preprocessing steps, the negative effects of outliers are reduced using the CKR-based robust nonlinear estimator. With the help of ensemble strategy, more reliable prediction results are further obtained. An industrial case validates the practicality and reliability of EDCKR.

摘要

尽管有几种数据驱动的软传感器可用,但在工业橡胶混合过程中在线可靠地预测门尼粘度仍然是一项具有挑战性的任务。提出了一种稳健的半监督软传感器,称为集成深度相关核回归(EDCKR)。它将集成策略、深度简洁网络(DBN)和相关核回归(CKR)集成到一个统一的软传感框架中。基于多级 DBN 的无监督学习阶段从所有辅助变量中提取有用信息。然后,构建一个监督 CKR 模型来探索提取特征与门尼粘度值之间的关系。通过基于 CKR 的稳健非线性估计器,无需繁琐的预处理步骤即可减少异常值的负面影响。借助集成策略,可以进一步获得更可靠的预测结果。工业案例验证了 EDCKR 的实用性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4546/7038447/11c8311a1ff4/sensors-20-00695-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验