Zhou Shaojie, Wei Wutao, Zhang Yingying, Cui Shizhong, Chen Weihua, Mi Liwei
Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, Henan, 450007, P.R. China.
College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P.R. China.
Sci Rep. 2019 Sep 4;9(1):12727. doi: 10.1038/s41598-019-49138-5.
The practical implementation of supercapacitors is hindered by low utilization and poor structural stability of electrode materials. Herein, to surmount these critical challenges, a three-dimensional hierarchical α-Co(OH)/α-Ni(OH) heterojunction nanorods are built in situ on Ni foam through a mild two-step growth reaction. The unique lamellar crystal structure and abundant intercalated anions of α-M(OH) (M = Co or Ni) and the ideal electronic conductivity of α-Co(OH) construct numerous cross-linked ion and electron transport paths in heterojunction nanorods. The deformation stresses exerted by α-Co(OH) and α-Ni(OH) on each other guarantee the excellent structural stability of this heterojunction nanorods. Using nickel foam with a three-dimensional network conductive framework as the template ensures the rapidly transfer of electrons between this heterojunction nanorods and current collector. Three-dimensional hierarchical structure of α-Co(OH)/α-Ni(OH) heterojunction nanorods provides a large liquid interface area. These result together in the high utilization rate and excellent structure stability of the α-Co(OH)/α-Ni(OH) heterojunction nanorods. And the capacitance retention rate is up to 93.4% at 1 A g from three-electrode system to two-electrode system. The α-Co(OH)/α-Ni(OH)//AC device also present a long cycle life (the capacitance retention rate is 123.6% at 5 A g for 10000 cycles), a high specific capacitance (207.2 F g at 1 A g), and high energy density and power density (72.6 Wh kg at 196.4 W kg and 40.9 Wh kg at 3491.8 W kg), exhibiting a fascinating potential for supercapacitor in large-scale applications.
超级电容器的实际应用受到电极材料利用率低和结构稳定性差的阻碍。在此,为了克服这些关键挑战,通过温和的两步生长反应在泡沫镍上原位构建了三维分级α-Co(OH)/α-Ni(OH)异质结纳米棒。α-M(OH)(M = Co或Ni)独特的层状晶体结构和丰富的嵌入阴离子以及α-Co(OH)理想的电子导电性在异质结纳米棒中构建了众多交联的离子和电子传输路径。α-Co(OH)和α-Ni(OH)相互施加的变形应力保证了这种异质结纳米棒优异的结构稳定性。以具有三维网络导电框架的泡沫镍为模板可确保电子在该异质结纳米棒与集流体之间快速转移。α-Co(OH)/α-Ni(OH)异质结纳米棒的三维分级结构提供了大的液体界面面积。这些共同导致α-Co(OH)/α-Ni(OH)异质结纳米棒的高利用率和优异的结构稳定性。并且在从三电极体系到两电极体系的过程中,在1 A g时电容保持率高达93.4%。α-Co(OH)/α-Ni(OH)//AC器件还具有长循环寿命(在5 A g下循环10000次时电容保持率为123.6%)、高比电容(在1 A g时为207.2 F g)以及高能量密度和功率密度(在196.4 W kg时为72.6 Wh kg,在3491.8 W kg时为40.9 Wh kg),在大规模应用中展现出超级电容器的诱人潜力。