Suppr超能文献

经典多体系统中的混合速率。

Mixing rate in Classical Many Body Systems.

作者信息

Frenkel Gad, Schwartz Moshe

机构信息

Faculty of Engineering, Ruppin Academic Center, Emek-Hefer, 40250, Monash, Israel.

School of Physics and Astronomy, Raymond and Beverly Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.

出版信息

Sci Rep. 2019 Sep 4;9(1):12784. doi: 10.1038/s41598-019-47269-3.

Abstract

Mixing in many body systems is intuitively understood as the change in time of the set of neighbors surrounding each particle. Its rate and its development over time hold important clues to the behavior of many body systems. For example, gas particles constantly change their position and surrounding particles, while in solids one expects the motion of the atoms to be limited by a fixed set of neighboring atoms. In other systems the situation is less clear. For example, agitated granular systems may behave like a fluid, a solid or glass, depending on various parameter such as density and friction. Thus, we introduce a parameter which describes the mixing rate in many body systems in terms of changes of a properly chosen adjacency matrix. The parameter is easily measurable in simulations but not in experiment. To demonstrate an application of the concept, we simulate a many body system, with particles interacting via a two-body potential and calculate the mixing rate as a function of time and volume fraction. The time dependence of the mixing rate clearly indicates the onset of crystallization.

摘要

在许多体系统中,混合直观上被理解为围绕每个粒子的邻居集随时间的变化。其速率及其随时间的发展为多体系统的行为提供了重要线索。例如,气体粒子不断改变其位置和周围粒子,而在固体中,人们预期原子的运动受到一组固定的相邻原子的限制。在其他系统中,情况则不太明确。例如,搅拌的颗粒系统可能表现得像流体、固体或玻璃,这取决于密度和摩擦等各种参数。因此,我们引入一个参数,该参数根据适当选择的邻接矩阵的变化来描述多体系统中的混合速率。该参数在模拟中易于测量,但在实验中则不然。为了演示该概念的应用,我们模拟了一个多体系统,其中粒子通过两体势相互作用,并计算混合速率作为时间和体积分数的函数。混合速率的时间依赖性清楚地表明了结晶的开始。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c53f/6726652/91561581c90b/41598_2019_47269_Fig1_HTML.jpg

相似文献

1
Mixing rate in Classical Many Body Systems.
Sci Rep. 2019 Sep 4;9(1):12784. doi: 10.1038/s41598-019-47269-3.
2
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
3
Time-of-flight variant to image mixing of granular media in a 3D fluidized bed.
J Magn Reson. 2007 Aug;187(2):199-204. doi: 10.1016/j.jmr.2007.04.013. Epub 2007 Apr 30.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
6
Investigation of mixing homogeneity of binary particle systems in high-shear wet granulator by DEM.
Drug Dev Ind Pharm. 2023 Feb;49(2):179-188. doi: 10.1080/03639045.2023.2194993. Epub 2023 Apr 3.
7
8
Virtual Experiments of Particle Mixing Process with the SPH-DEM Model.
Materials (Basel). 2021 Apr 25;14(9):2199. doi: 10.3390/ma14092199.
9
Mixing and segregation of granular materials in chute flows.
Chaos. 1999 Sep;9(3):594-610. doi: 10.1063/1.166433.

本文引用的文献

1
Clustering and velocity distributions in granular gases cooling by solid friction.
Phys Rev E. 2016 Sep;94(3-1):032907. doi: 10.1103/PhysRevE.94.032907. Epub 2016 Sep 19.
2
Direct observation of dynamic shear jamming in dense suspensions.
Nature. 2016 Apr 14;532(7598):214-7. doi: 10.1038/nature17167. Epub 2016 Apr 4.
3
Towards a Unified Description of the Rheology of Hard-Particle Suspensions.
Phys Rev Lett. 2015 Aug 21;115(8):088304. doi: 10.1103/PhysRevLett.115.088304. Epub 2015 Aug 20.
4
Discontinuous shear thickening without inertia in dense non-Brownian suspensions.
Phys Rev Lett. 2014 Mar 7;112(9):098302. doi: 10.1103/PhysRevLett.112.098302. Epub 2014 Mar 6.
5
Discontinuous shear thickening of frictional hard-sphere suspensions.
Phys Rev Lett. 2013 Nov 22;111(21):218301. doi: 10.1103/PhysRevLett.111.218301. Epub 2013 Nov 18.
6
Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):062202. doi: 10.1103/PhysRevE.87.062202. Epub 2013 Jun 14.
7
Jamming by shear.
Nature. 2011 Dec 14;480(7377):355-8. doi: 10.1038/nature10667.
8
Velocity distributions and aging in a cooling granular gas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031302. doi: 10.1103/PhysRevE.75.031302. Epub 2007 Mar 6.
9
Jamming transition in emulsions and granular materials.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jul;72(1 Pt 1):011301. doi: 10.1103/PhysRevE.72.011301. Epub 2005 Jul 7.
10
Phase transitions, Kauzmann curves, and inverse melting.
Biophys Chem. 2003 Sep;105(2-3):211-20. doi: 10.1016/s0301-4622(03)00089-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验