Shin Seung Jun, Yuan Ying, Strong Louise C, Bojadzieva Jasmina, Wang Wenyi
Korea University.
The University of Texas MD Anderson Cancer Center.
J Am Stat Assoc. 2019;114(526):541-552. doi: 10.1080/01621459.2018.1482749. Epub 2018 Aug 15.
Penetrance, which plays a key role in genetic research, is defined as the proportion of individuals with the genetic variants (i.e., genotype) that cause a particular trait and who have clinical symptoms of the trait (i.e., phenotype). We propose a Bayesian semiparametric approach to estimate the cancer-specific age-at-onset penetrance in the presence of the competing risk of multiple cancers. We employ a Bayesian semiparametric competing risk model to model the duration until individuals in a high-risk group develop different cancers, and accommodate family data using family-wise likelihoods. We tackle the ascertainment bias arising when family data are collected through probands in a high-risk population in which disease cases are more likely to be observed. We apply the proposed method to a cohort of 186 families with Li-Fraumeni syndrome identified through probands with sarcoma treated at MD Anderson Cancer Center from 1944 to 1982.
外显率在基因研究中起着关键作用,其定义为具有导致特定性状的基因变异(即基因型)且出现该性状临床症状(即表型)的个体比例。我们提出一种贝叶斯半参数方法,用于在存在多种癌症竞争风险的情况下估计特定癌症的发病年龄外显率。我们采用贝叶斯半参数竞争风险模型来模拟高危组个体发生不同癌症之前的持续时间,并使用家族似然法纳入家族数据。我们解决了在高危人群中通过先证者收集家族数据时出现的确诊偏倚问题,在该高危人群中更容易观察到疾病病例。我们将所提出的方法应用于1944年至1982年在MD安德森癌症中心接受肉瘤治疗的先证者所识别出的186个李-弗劳梅尼综合征家族队列。