Suppr超能文献

血管生成抑制后的再血管化有利于新的发芽而不是废弃血管的再利用。

Revascularization after angiogenesis inhibition favors new sprouting over abandoned vessel reuse.

机构信息

Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, 58183, Linköping, Sweden.

Mason Eye Institute, Ophthalmology-Retinal Vascular Service Hospital MA102C, Missouri, MO, USA.

出版信息

Angiogenesis. 2019 Nov;22(4):553-567. doi: 10.1007/s10456-019-09679-9. Epub 2019 Sep 4.

Abstract

Inhibiting pathologic angiogenesis can halt disease progression, but such inhibition may offer only a temporary benefit, followed by tissue revascularization after treatment stoppage. This revascularization, however, occurs by largely unknown phenotypic changes in pathologic vessels. To investigate the dynamics of vessel reconfiguration during revascularization, we developed a model of reversible murine corneal angiogenesis permitting longitudinal examination of the same vasculature. Following 30 days of angiogenesis inhibition, two types of vascular structure were evident: partially regressed persistent vessels that were degenerate and barely functional, and fully regressed, non-functional empty basement membrane sleeves (ebms). While persistent vessels maintained a limited flow and retained collagen IV+ basement membrane, CD31+ endothelial cells (EC), and α-SMA+ pericytes, ebms were acellular and expressed only collagen IV. Upon terminating angiogenesis inhibition, transmission electron microscopy and live imaging revealed that revascularization ensued by a rapid reversal of EC degeneracy in persistent vessels, facilitating their phenotypic normalization, vasodilation, increased flow, and subsequent new angiogenic sprouting. Conversely, ebms were irreversibly sealed from the circulation by excess collagen IV deposition that inhibited EC migration and prevented their reuse. Fully and partially regressed vessels therefore have opposing roles during revascularization, where fully regressed vessels inhibit new sprouting while partially regressed persistent vessels rapidly reactivate and serve as the source of continued pathologic angiogenesis.

摘要

抑制病理性血管生成可以阻止疾病进展,但这种抑制可能只是暂时的,停止治疗后会出现组织再血管化。然而,这种再血管化是通过病理性血管中尚未完全明确的表型变化发生的。为了研究再血管化过程中血管重构的动力学,我们开发了一种可逆转的小鼠角膜血管生成模型,允许对同一血管进行纵向检查。在血管生成抑制 30 天后,两种类型的血管结构明显:部分退化的持续血管,已经退化且几乎没有功能,以及完全退化的、无功能的空基底膜套管(ebms)。虽然持续血管保持有限的血流并保留了胶原 IV+基底膜,但 CD31+内皮细胞(EC)和α-SMA+周细胞仍然存在,而 ebms 则无细胞,仅表达胶原 IV。停止血管生成抑制后,透射电子显微镜和活体成像显示,再血管化是通过持续血管中 EC 退化的快速逆转来实现的,这有助于它们的表型正常化、血管扩张、增加血流,随后出现新的血管生成发芽。相反,ebms 由于胶原 IV 沉积过多而被循环不可逆地封闭,这抑制了 EC 的迁移并阻止了它们的再利用。因此,完全和部分退化的血管在再血管化过程中具有相反的作用,完全退化的血管抑制新的发芽,而部分退化的持续血管则迅速重新激活并成为持续病理性血管生成的来源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69f9/6863948/e7659180acf6/10456_2019_9679_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验