Suppr超能文献

磷酰化无序蛋白中核磁共振化学位移的量子化学计算。

Quantum Chemical Calculations of NMR Chemical Shifts in Phosphorylated Intrinsically Disordered Proteins.

机构信息

Faculty of Pharmacy in Hradec Králové , Charles University , Akademika Heyrovského 1203 , 500 05 Hradec Králové , Czech Republic.

出版信息

J Chem Theory Comput. 2019 Oct 8;15(10):5642-5658. doi: 10.1021/acs.jctc.8b00257. Epub 2019 Sep 23.

Abstract

Quantum mechanics (QM) calculations are applied to examine H, C, N, and P chemical shifts of two phosphorylation sites in an intrinsically disordered protein region. The QM calculations employ a combination of (1) structural ensembles generated by molecular dynamics, (2) a fragmentation technique based on the adjustable density matrix assembler, and (3) density functional methods. The combined computational approach is used to obtain chemical shifts (i) in the S19 and S40 residues of the nonphosphorylated and (ii) in the pS19 and pS40 residues of the doubly phosphorylated human tyrosine hydroxylase 1 as the system of interest. We study the effects of conformational averaging and explicit solvent sampling as well as the effects of phosphorylation on the computed chemical shifts. Good to great quantitative agreement with the experiment is achieved for all nuclei, provided that the systematic error cancellation is optimized by the choice of a suitable NMR standard. The effect of the standard reference on the computed N and P chemical shifts is demonstrated by employing three different referencing methods. Error bars associated with the statistical averaging of the computed P chemical shifts are larger than the difference between the P chemical shift of pS19 and pS40. The sequence trend of P shifts therefore could not be reliably reproduced. On the contrary, the calculations correctly predict the change of the C chemical shift for CB induced by the phosphorylation of the serine residues. The present work demonstrates that QM calculations coupled with molecular dynamics simulations and fragmentation techniques can be used as an alternative to empirical prediction tools in the structure characterization of intrinsically disordered proteins.

摘要

量子力学(QM)计算被应用于研究一个无规卷曲蛋白质区域中的两个磷酸化位点的 H、C、N 和 P 化学位移。QM 计算采用了以下三种方法的组合:(1)分子动力学生成的结构集合,(2)基于可调密度矩阵组装器的碎片技术,以及(3)密度泛函方法。这种组合计算方法用于获得非磷酸化的 S19 和 S40 残基以及双磷酸化的人酪氨酸羟化酶 1 的 pS19 和 pS40 残基的化学位移(i)。我们研究了构象平均和显式溶剂采样的影响,以及磷酸化对计算化学位移的影响。对于所有核,都实现了与实验非常好的定量一致性,只要通过选择合适的 NMR 标准来优化系统误差消除。通过采用三种不同的参考方法,演示了标准参考对计算的 N 和 P 化学位移的影响。与计算的 P 化学位移的统计平均相关的误差条大于 pS19 和 pS40 的 P 化学位移之间的差异。因此,无法可靠地再现 P 位移的序列趋势。相反,计算正确地预测了 CB 的 C 化学位移因丝氨酸残基的磷酸化而发生的变化。本工作表明,QM 计算与分子动力学模拟和碎片技术相结合,可以作为无规卷曲蛋白质结构表征的经验预测工具的替代方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验