Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, D-81377 München, Germany.
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
J Chem Theory Comput. 2024 Mar 26;20(6):2433-2444. doi: 10.1021/acs.jctc.3c01280. Epub 2024 Mar 18.
NMR (nuclear magnetic resonance) spectroscopy allows for important atomistic insights into the structure and dynamics of biological macromolecules; however, reliable assignments of experimental spectra are often difficult. Herein, quantum mechanical/molecular mechanical (QM/MM) calculations can provide crucial support. A major problem for the simulations is that experimental NMR signals are time-averaged over much longer time scales, and since computed chemical shifts are highly sensitive to local changes in the electronic and structural environment, sufficiently large averages over representative structural ensembles are essential. This entails high computational demands for reliable simulations. For NMR measurements in biological systems, a nucleus of major interest is P since it is both highly present (e.g., in nucleic acids) and easily observable. The focus of our present study is to develop a robust and computationally cost-efficient framework for simulating P NMR chemical shifts of nucleotides. We apply this scheme to study the different stages of the ATP hydrolysis reaction catalyzed by p97. Our methodology is based on MM molecular dynamics (MM-MD) sampling, followed by QM/MM structure optimizations and NMR calculations. Overall, our study is one of the most comprehensive QM-based P studies in a protein environment and the first to provide computed NMR chemical shifts for multiple nucleotide states in a protein environment. This study sheds light on a process that is challenging to probe experimentally and aims to bridge the gap between measured and calculated NMR spectroscopic properties.
NMR(核磁共振)光谱学允许对生物大分子的结构和动力学进行重要的原子水平洞察;然而,实验光谱的可靠分配通常是困难的。在此,量子力学/分子力学(QM/MM)计算可以提供关键支持。模拟的一个主要问题是,实验 NMR 信号是在更长的时间尺度上进行时间平均的,并且由于计算的化学位移对电子和结构环境的局部变化非常敏感,因此代表结构集合的足够大的平均值是必不可少的。这需要可靠模拟的高计算需求。对于生物系统中的 NMR 测量,一个主要感兴趣的核是 P,因为它不仅高度存在(例如,在核酸中)而且易于观察。我们目前研究的重点是开发一种稳健且计算成本效益高的框架,用于模拟核苷酸的 P NMR 化学位移。我们应用该方案来研究 p97 催化的 ATP 水解反应的不同阶段。我们的方法基于 MM 分子动力学(MM-MD)采样,然后进行 QM/MM 结构优化和 NMR 计算。总的来说,我们的研究是在蛋白质环境中进行的最全面的基于 QM 的 P 研究之一,也是第一个在蛋白质环境中提供多个核苷酸状态的计算 NMR 化学位移的研究。这项研究揭示了一个在实验上难以探测的过程,并旨在弥合测量和计算 NMR 光谱性质之间的差距。