Suppr超能文献

一种使I型干扰素特征分析在各研究中心之间具有可比性的简单可靠策略。

An Easy and Reliable Strategy for Making Type I Interferon Signature Analysis Comparable among Research Centers.

作者信息

Pin Alessia, Monasta Lorenzo, Taddio Andrea, Piscianz Elisa, Tommasini Alberto, Tesser Alessandra

机构信息

Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.

Clinical Epidemiology and Public Health Research Unit, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.

出版信息

Diagnostics (Basel). 2019 Sep 4;9(3):113. doi: 10.3390/diagnostics9030113.

Abstract

Interferon-stimulated genes (ISGs) are a set of genes whose transcription is induced by interferon (IFN). The measure of the expression of ISGs enables calculating an IFN score, which gives an indirect estimate of the exposition of cells to IFN-mediated inflammation. The measure of the IFN score is proposed for the screening of monogenic interferonopathies, like the Aicardi-Goutières syndrome, or to stratify subjects with systemic lupus erythematosus to receive IFN-targeted treatments. Apart from these scenarios, there is no agreement on the diagnostic value of the score in distinguishing IFN-related disorders from diseases dominated by other types of cytokines. Since the IFN score is currently measured in several research hospitals, merging experiences could help define the potential of scoring IFN inflammation in clinical practice. However, the IFN score calculated at different laboratories may be hardly comparable due to the distinct sets of IFN-stimulated genes assessed and to different controls used for data normalization. We developed a reliable approach to minimize the inter-laboratory variability, thereby providing shared strategies for the IFN signature analysis and allowing different centers to compare data and merge their experiences.

摘要

干扰素刺激基因(ISGs)是一组其转录由干扰素(IFN)诱导的基因。对ISGs表达的测量能够计算出一个IFN评分,该评分可间接估计细胞受到IFN介导的炎症影响的程度。提出测量IFN评分用于筛查单基因干扰素病,如Aicardi - Goutières综合征,或对系统性红斑狼疮患者进行分层以接受针对IFN的治疗。除了这些情况外,关于该评分在区分IFN相关疾病与由其他类型细胞因子主导的疾病方面的诊断价值尚无定论。由于目前在多家研究医院都在测量IFN评分,整合经验有助于明确在临床实践中对IFN炎症进行评分的潜力。然而由于所评估的IFN刺激基因集不同以及用于数据标准化的对照不同,不同实验室计算出的IFN评分可能很难进行比较。我们开发了一种可靠的方法来最小化实验室间的变异性,从而为IFN特征分析提供共享策略,并允许不同中心比较数据并整合经验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b4/6787630/0da6fdc9af11/diagnostics-09-00113-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验