Suppr超能文献

基于超声图像反馈的无系留软夹钳磁运动控制与规划

Magnetic Motion Control and Planning of Untethered Soft Grippers using Ultrasound Image Feedback.

作者信息

Scheggi Stefano, Chandrasekar Krishna Kumar T, Yoon ChangKyu, Sawaryn Ben, van de Steeg Gert, Gracias David H, Misra Sarthak

机构信息

Surgical Robotics Laboratory, Department of Biomechanical Engineering, MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, 7522 NB, The Netherlands.

Department of Materials Science and Engineering, The Johns Hopkins University, MD 21218, USA.

出版信息

IEEE Int Conf Robot Autom. 2017 May-Jun;2017:6156-6161. doi: 10.1109/ICRA.2017.7989730. Epub 2017 Jul 24.

Abstract

Soft miniaturized untethered grippers can be used to manipulate and transport biological material in unstructured and tortuous environments. Previous studies on control of soft miniaturized grippers employed cameras and optical images as a feedback modality. However, the use of cameras might be unsuitable for localizing miniaturized agents that navigate within the human body. In this paper, we demonstrate the wireless magnetic motion control and planning of soft untethered grippers using feedback extracted from B-mode ultrasound images. Results show that our system employing ultrasound images can be used to control the miniaturized grippers with an average tracking error of 0.4±0.13 mm without payload and 0.36±0.05 mm when the agent performs a transportation task with a payload. The proposed ultrasound feedback magnetic control system demonstrates the ability to control miniaturized grippers in situations where visual feedback cannot be provided via cameras.

摘要

柔软的微型无系绳夹具可用于在非结构化和曲折的环境中操纵和运输生物材料。先前关于软微型夹具控制的研究采用相机和光学图像作为反馈方式。然而,相机的使用可能不适用于定位在人体内导航的微型智能体。在本文中,我们展示了利用从B超图像中提取的反馈对软无系绳夹具进行无线磁运动控制和规划。结果表明,我们的超声图像系统可用于控制微型夹具,在无负载时平均跟踪误差为0.4±0.13毫米,当智能体执行带负载的运输任务时平均跟踪误差为0.36±0.05毫米。所提出的超声反馈磁控制系统展示了在无法通过相机提供视觉反馈的情况下控制微型夹具的能力。

相似文献

5
Control of Untethered Soft Grippers for Pick-and-Place Tasks.用于抓取和放置任务的无系绳软夹爪控制
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016 Jun;2016:299-304. doi: 10.1109/BIOROB.2016.7523642. Epub 2016 Jul 28.
7
Biodegradable Thermomagnetically Responsive Soft Untethered Grippers.可生物降解的热磁响应型软无束缚夹爪
ACS Appl Mater Interfaces. 2019 Jan 9;11(1):151-159. doi: 10.1021/acsami.8b15646. Epub 2018 Dec 20.
10
Head tracking using an optical soft tactile sensing surface.使用光学软触觉传感表面进行头部跟踪。
Front Robot AI. 2024 Jul 4;11:1410858. doi: 10.3389/frobt.2024.1410858. eCollection 2024.

引用本文的文献

7
Ultrasound-Guided Wireless Tubular Robotic Anchoring System.超声引导无线管状机器人锚定系统
IEEE Robot Autom Lett. 2020 Jul;5(3):4859-4866. doi: 10.1109/LRA.2020.3003868. Epub 2020 Jun 19.

本文引用的文献

1
Control of Untethered Soft Grippers for Pick-and-Place Tasks.用于抓取和放置任务的无系绳软夹爪控制
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2016 Jun;2016:299-304. doi: 10.1109/BIOROB.2016.7523642. Epub 2016 Jul 28.
4
Self-folding thermo-magnetically responsive soft microgrippers.自折叠热磁响应软微夹钳
ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3398-405. doi: 10.1021/am508621s. Epub 2015 Jan 28.
6
Biopsy with thermally-responsive untethered microtools.热响应型无束缚微工具活组织检查。
Adv Mater. 2013 Jan 25;25(4):514-9. doi: 10.1002/adma.201203348. Epub 2012 Oct 9.
9
Microrobots for minimally invasive medicine.用于微创医学的微型机器人。
Annu Rev Biomed Eng. 2010 Aug 15;12:55-85. doi: 10.1146/annurev-bioeng-010510-103409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验