Lv Jiahang, Hu Yao, Zhao Hongyu, Ye Min, Ding Ning, Zhong Jingshan, Wang Xiaopu
Beijing Key Lab for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing, China.
Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), The Chinese University of Hong Kong, Shenzhen, China.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1426-1439. doi: 10.21037/qims-22-430. Epub 2022 Oct 25.
Imaging and tracking are crucial for microrobots which navigate through complex 3D environments. Fluorescent imaging (FI) by microscope offers a high-resolution and high-sensitive imaging method to study the property of microrobots. However, conventional microscope suffers from shallow depth of field (DOF) and lacks 3D imaging capability.
We proposed a high-resolution and high-speed 3D tracking method for microrobots based on a fluorescent light field microscope (FLFM). We designed the FLFM system according to the size of a representative helical microrobot (150 μm body length, 50 μm screw diameter), and studied the system's performance. We also proposed a 3D tracking algorithm for microrobots using digital refocusing.
We validated the method by simulations and built an FLFM system to perform the tracking experiments of microrobots with representative size. Our 3D tracking method achieves a 30 fps data acquisition rate, 10 μm lateral resolution and approximately 40 μm axial resolution over a volume of 1,200×1,200×326 μm. Results indicate that the accuracy of the method can reach about 9 μm.
Compared with the FI by a conventional microscope, the FLFM-based method gains wider DOF and 3D imaging capability with a single-shot image. The tracking method succeeds in providing the trajectory of the microrobot with a good lateral resolution.
成像和跟踪对于在复杂三维环境中导航的微型机器人至关重要。通过显微镜进行的荧光成像(FI)提供了一种高分辨率和高灵敏度的成像方法来研究微型机器人的特性。然而,传统显微镜存在景深(DOF)较浅且缺乏三维成像能力的问题。
我们提出了一种基于荧光光场显微镜(FLFM)的微型机器人高分辨率和高速三维跟踪方法。我们根据一种代表性螺旋微型机器人(体长150μm,螺旋直径50μm)的尺寸设计了FLFM系统,并研究了该系统的性能。我们还提出了一种使用数字重聚焦的微型机器人三维跟踪算法。
我们通过模拟验证了该方法,并构建了一个FLFM系统来对具有代表性尺寸的微型机器人进行跟踪实验。我们的三维跟踪方法在1200×1200×326μm的体积上实现了30帧/秒的数据采集速率、10μm的横向分辨率和约40μm的轴向分辨率。结果表明该方法的精度可达约9μm。
与传统显微镜的FI相比,基于FLFM的方法通过单次成像获得了更宽的景深和三维成像能力。该跟踪方法成功地以良好的横向分辨率提供了微型机器人的轨迹。