Wang Tianlu, Hu Wenqi, Ren Ziyu, Sitti Metin
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, with the Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland, and also with the School of Engineering and School of Medicine, Koc University, Istanbul 34450, Turkey.
IEEE Robot Autom Lett. 2020 Jul;5(3):4859-4866. doi: 10.1109/LRA.2020.3003868. Epub 2020 Jun 19.
Untethered miniature robots have significant poten-tial and promise in diverse minimally invasive medical applications inside the human body. For drug delivery and physical contra-ception applications inside tubular structures, it is desirable to have a miniature anchoring robot with self-locking mechanism at a target tubular region. Moreover, the behavior of this robot should be tracked and feedback-controlled by a medical imaging-based system. While such a system is unavailable, we report a reversible untethered anchoring robot design based on remote magnetic actuation. The current robot prototype's dimension is 7.5 mm in diameter, 17.8 mm in length, and made of soft polyurethane elastomer, photopolymer, and two tiny permanent magnets. Its relaxation and anchoring states can be maintained in a stable manner without supplying any control and actuation input. To control the robot's locomotion, we implement a two-dimensional (2D) ultrasound imaging-based tracking and control system, which automatically sweeps locally and updates the robot's position. With such a system, we demonstrate that the robot can be controlled to follow a pre-defined 1D path with the maximal position error of 0.53 ± 0.05 mm inside a tubular phantom, where the reversible anchoring could be achieved under the monitoring of ultrasound imaging.
无系绳微型机器人在人体内多种微创医疗应用中具有巨大潜力和前景。对于管状结构内的药物输送和物理避孕应用,期望有一个在目标管状区域具有自锁机制的微型锚定机器人。此外,该机器人的行为应由基于医学成像的系统进行跟踪和反馈控制。在尚无此类系统的情况下,我们报告了一种基于远程磁驱动的可逆无系绳锚定机器人设计。当前的机器人原型直径为7.5毫米,长度为17.8毫米,由软质聚氨酯弹性体、光聚合物和两个微型永磁体制成。其松弛和锚定状态无需任何控制和驱动输入即可稳定维持。为了控制机器人的运动,我们实现了一种基于二维(2D)超声成像的跟踪和控制系统,该系统可自动进行局部扫描并更新机器人的位置。利用这样的系统,我们证明了该机器人能够被控制沿着预定义的一维路径移动,在管状模型内的最大位置误差为0.53±0.05毫米,并且在超声成像监测下可实现可逆锚定。