Suppr超能文献

超声引导无线管状机器人锚定系统

Ultrasound-Guided Wireless Tubular Robotic Anchoring System.

作者信息

Wang Tianlu, Hu Wenqi, Ren Ziyu, Sitti Metin

机构信息

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.

Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany, with the Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland, and also with the School of Engineering and School of Medicine, Koc University, Istanbul 34450, Turkey.

出版信息

IEEE Robot Autom Lett. 2020 Jul;5(3):4859-4866. doi: 10.1109/LRA.2020.3003868. Epub 2020 Jun 19.

Abstract

Untethered miniature robots have significant poten-tial and promise in diverse minimally invasive medical applications inside the human body. For drug delivery and physical contra-ception applications inside tubular structures, it is desirable to have a miniature anchoring robot with self-locking mechanism at a target tubular region. Moreover, the behavior of this robot should be tracked and feedback-controlled by a medical imaging-based system. While such a system is unavailable, we report a reversible untethered anchoring robot design based on remote magnetic actuation. The current robot prototype's dimension is 7.5 mm in diameter, 17.8 mm in length, and made of soft polyurethane elastomer, photopolymer, and two tiny permanent magnets. Its relaxation and anchoring states can be maintained in a stable manner without supplying any control and actuation input. To control the robot's locomotion, we implement a two-dimensional (2D) ultrasound imaging-based tracking and control system, which automatically sweeps locally and updates the robot's position. With such a system, we demonstrate that the robot can be controlled to follow a pre-defined 1D path with the maximal position error of 0.53 ± 0.05 mm inside a tubular phantom, where the reversible anchoring could be achieved under the monitoring of ultrasound imaging.

摘要

无系绳微型机器人在人体内多种微创医疗应用中具有巨大潜力和前景。对于管状结构内的药物输送和物理避孕应用,期望有一个在目标管状区域具有自锁机制的微型锚定机器人。此外,该机器人的行为应由基于医学成像的系统进行跟踪和反馈控制。在尚无此类系统的情况下,我们报告了一种基于远程磁驱动的可逆无系绳锚定机器人设计。当前的机器人原型直径为7.5毫米,长度为17.8毫米,由软质聚氨酯弹性体、光聚合物和两个微型永磁体制成。其松弛和锚定状态无需任何控制和驱动输入即可稳定维持。为了控制机器人的运动,我们实现了一种基于二维(2D)超声成像的跟踪和控制系统,该系统可自动进行局部扫描并更新机器人的位置。利用这样的系统,我们证明了该机器人能够被控制沿着预定义的一维路径移动,在管状模型内的最大位置误差为0.53±0.05毫米,并且在超声成像监测下可实现可逆锚定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a67e/7610639/e5c8b1939962/EMS104389-f001.jpg

相似文献

1
Ultrasound-Guided Wireless Tubular Robotic Anchoring System.超声引导无线管状机器人锚定系统
IEEE Robot Autom Lett. 2020 Jul;5(3):4859-4866. doi: 10.1109/LRA.2020.3003868. Epub 2020 Jun 19.
2
On-demand anchoring of wireless soft miniature robots on soft surfaces.按需固定在软表面上的无线软体微型机器人。
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2207767119. doi: 10.1073/pnas.2207767119. Epub 2022 Aug 15.
4
Wireless MRI-Powered Reversible Orientation-Locking Capsule Robot.无线磁共振动力可逆定向锁定胶囊机器人。
Adv Sci (Weinh). 2021 Jul;8(13):2100463. doi: 10.1002/advs.202100463. Epub 2021 May 3.

本文引用的文献

3
Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy.磁驱动软胶囊内窥镜用于细针活检。
Soft Robot. 2020 Feb;7(1):10-21. doi: 10.1089/soro.2018.0171. Epub 2019 Sep 12.
4
Intelligent magnetic manipulation for gastrointestinal ultrasound.智能磁操控在胃肠道超声中的应用
Sci Robot. 2019 Jun 26;4(31). doi: 10.1126/scirobotics.aav7725. Epub 2019 Jun 19.
9
Biomedical Applications of Untethered Mobile Milli/Microrobots.无束缚移动毫/微型机器人的生物医学应用
Proc IEEE Inst Electr Electron Eng. 2015 Feb;103(2):205-224. doi: 10.1109/JPROC.2014.2385105. Epub 2015 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验