Cai Yi, Huang Jing, Ning Jing, Lee Mei-Ling Ting, Rosner Bernard, Chen Yong
AT&T Services, Inc, Plano, Texas.
Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania.
Stat Med. 2019 Nov 10;38(25):4999-5009. doi: 10.1002/sim.8346. Epub 2019 Sep 5.
Standard methods for two-sample tests such as the t-test and Wilcoxon rank sum test may lead to incorrect type I errors when applied to longitudinal or clustered data. Recent alternatives of two-sample tests for clustered data often require certain assumptions on the correlation structure and/or noninformative cluster size. In this paper, based on a novel pseudolikelihood for correlated data, we propose a score test without knowledge of the correlation structure or assuming data missingness at random. The proposed score test can capture differences in the mean and variance between two groups simultaneously. We use projection theory to derive the limiting distribution of the test statistic, in which the covariance matrix can be empirically estimated. We conduct simulation studies to evaluate the proposed test and compare it with existing methods. To illustrate the usefulness proposed test, we use it to compare self-reported weight loss data in a friends' referral group, with the data from the Internet self-joining group.
诸如t检验和Wilcoxon秩和检验等两样本检验的标准方法,应用于纵向数据或聚类数据时可能会导致错误的I型错误。针对聚类数据的两样本检验的最新替代方法通常需要对相关结构和/或非信息性聚类大小做出某些假设。在本文中,基于一种用于相关数据的新型伪似然函数,我们提出了一种无需了解相关结构或假设数据随机缺失的得分检验。所提出的得分检验可以同时捕捉两组之间均值和方差的差异。我们使用投影理论来推导检验统计量的极限分布,其中协方差矩阵可以通过经验估计。我们进行模拟研究以评估所提出的检验,并将其与现有方法进行比较。为了说明所提出检验的实用性,我们用它来比较朋友推荐组中的自我报告体重减轻数据与网络自加入组中的数据。