eVIDA Research Group, University of Deusto, 48007 Bilbo, Spain.
Geriatric, Tijuana General Hospital, Tijuana 22195, Mexico.
Int J Environ Res Public Health. 2019 Sep 6;16(18):3275. doi: 10.3390/ijerph16183275.
This paper presents a study based on data analysis of the sarcopenia level in older adults. Sarcopenia is a prevalent pathology in adults of around 50 years of age, whereby the muscle mass decreases by 1 to 2% a year, and muscle strength experiences an annual decrease of 1.5% between 50 and 60 years of age, subsequently increasing by 3% each year. The World Health Organisation estimates that 5-13% of individuals of between 60 and 70 years of age and 11-50% of persons of 80 years of age or over have sarcopenia. This study was conducted with 166 patients and 99 variables. Demographic data was compiled including age, gender, place of residence, schooling, marital status, level of education, income, profession, and financial support from the State of Baja California, and biochemical parameters such as glycemia, cholesterolemia, and triglyceridemia were determined. A total of 166 patients took part in the study, with an average age of 77.24 years. The purpose of the study was to provide an automatic classifier of sarcopenia level in older adults using artificial intelligence in addition to identifying the weight of each variable used in the study. We used machine learning techniques in this work, in which 10 classifiers were employed to assess the variables and determine which would provide the best results, namely, Nearest Neighbors (3), Linear SVM (Support Vector Machines) (C = 0.025), RBF (Radial Basis Function) SVM (gamma = 2, C = 1), Gaussian Process (RBF (1.0)), Decision Tree (max_depth = 3), Random Forest (max_depth=3, n_estimators = 10), MPL (Multilayer Perceptron) (alpha = 1), AdaBoost, Gaussian Naive Bayes, and QDA (Quadratic Discriminant Analysis). Feature selection determined by the mean for the variable ranking suggests that Age, Systolic Arterial Hypertension (HAS), Mini Nutritional Assessment (MNA), Number of chronic diseases (ECNumber), and Sodium are the five most important variables in determining the sarcopenia level, and are thus of great importance prior to establishing any treatment or preventive measure. Analysis of the relationships existing between the presence of the variables and classifiers used in moderate and severe sarcopenia revealed that the sarcopenia level using the RBF SVM classifier with Age, HAS, MNA, ECNumber, and Sodium variables has 82'5 accuracy, a 90'2 F1, and 82'8 precision.
本文基于对老年人肌肉减少症水平的数据分析进行了研究。肌肉减少症是 50 岁左右成年人中普遍存在的一种病理,其肌肉质量每年减少 1%至 2%,肌肉力量在 50 岁至 60 岁之间每年减少 1.5%,随后每年增加 3%。世界卫生组织估计,60 岁至 70 岁之间的个体中有 5%至 13%,80 岁或以上的个体中有 11%至 50%患有肌肉减少症。这项研究共涉及 166 名患者和 99 个变量。收集了人口统计学数据,包括年龄、性别、居住地、教育程度、婚姻状况、教育程度、收入、职业以及下加利福尼亚州的财政支持,以及生化参数,如血糖、胆固醇和甘油三酯。共有 166 名患者参与了这项研究,平均年龄为 77.24 岁。这项研究的目的是除了确定研究中使用的每个变量的权重外,还使用人工智能为老年人肌肉减少症水平提供自动分类器。我们在这项工作中使用了机器学习技术,其中使用了 10 个分类器来评估变量,并确定哪些变量提供最佳结果,即最近邻(3)、线性 SVM(支持向量机)(C=0.025)、RBF(径向基函数)SVM(gamma=2,C=1)、高斯过程(RBF(1.0))、决策树(max_depth=3)、随机森林(max_depth=3,n_estimators=10)、MPL(多层感知器)(alpha=1)、AdaBoost、高斯朴素贝叶斯和 QDA(二次判别分析)。通过对变量排名的均值进行特征选择,结果表明年龄、收缩压性高血压(HAS)、微型营养评估(MNA)、慢性疾病数量(ECNumber)和钠是确定肌肉减少症水平的五个最重要的变量,因此在确定任何治疗或预防措施之前,这些变量非常重要。对中度和重度肌肉减少症中存在的变量和分类器之间的关系进行分析后发现,使用 RBF SVM 分类器和年龄、HAS、MNA、ECNumber 和钠变量的肌肉减少症水平具有 82'5%的准确率、90'2%的 F1 值和 82'8%的精度。