Suppr超能文献

墨西哥机器学习与深度学习方法的系统综述:挑战与机遇

A systematic review of Machine Learning and Deep Learning approaches in Mexico: challenges and opportunities.

作者信息

Uc Castillo José Luis, Marín Celestino Ana Elizabeth, Martínez Cruz Diego Armando, Tuxpan Vargas José, Ramos Leal José Alfredo, Morán Ramírez Janete

机构信息

Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, San Luis Potosí, Mexico.

CONAHCYT-Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, San Luis Potosí, Mexico.

出版信息

Front Artif Intell. 2025 Jan 7;7:1479855. doi: 10.3389/frai.2024.1479855. eCollection 2024.

Abstract

This systematic review provides a state-of-art of Artificial Intelligence (AI) models such as Machine Learning (ML) and Deep Learning (DL) development and its applications in Mexico in diverse fields. These models are recognized as powerful tools in many fields due to their capability to carry out several tasks such as forecasting, image classification, recognition, natural language processing, machine translation, etc. This review article aimed to provide comprehensive information on the Machine Learning and Deep Learning algorithms applied in Mexico. A total of 120 original research papers were included and details such as trends in publication, spatial location, institutions, publishing issues, subject areas, algorithms applied, and performance metrics were discussed. Furthermore, future directions and opportunities are presented. A total of 15 subject areas were identified, where Social Sciences and Medicine were the main application areas. It observed that Artificial Neural Networks (ANN) models were preferred, probably due to their capability to learn and model non-linear and complex relationships in addition to other popular models such as Random Forest (RF) and Support Vector Machines (SVM). It identified that the selection and application of the algorithms rely on the study objective and the data patterns. Regarding the performance metrics applied, accuracy and recall were the most employed. This paper could assist the readers in understanding the several Machine Learning and Deep Learning techniques used and their subject area of application in the Artificial Intelligence field in the country. Moreover, the study could provide significant knowledge in the development and implementation of a national AI strategy, according to country needs.

摘要

本系统综述介绍了人工智能(AI)模型的发展现状,如机器学习(ML)和深度学习(DL)在墨西哥不同领域的开发及其应用。这些模型因其能够执行多项任务,如预测、图像分类、识别、自然语言处理、机器翻译等,而在许多领域被视为强大的工具。这篇综述文章旨在提供关于墨西哥应用的机器学习和深度学习算法的全面信息。总共纳入了120篇原创研究论文,并讨论了诸如出版趋势、空间位置、机构、出版问题、主题领域、应用的算法和性能指标等细节。此外,还提出了未来的方向和机遇。总共确定了15个主题领域,其中社会科学和医学是主要应用领域。研究发现,人工神经网络(ANN)模型更受青睐,这可能是因为它们除了能够学习和建模非线性及复杂关系外,还具有其他流行模型如随机森林(RF)和支持向量机(SVM)的能力。研究确定算法的选择和应用取决于研究目标和数据模式。关于所应用的性能指标,准确率和召回率是使用最多的。本文可以帮助读者了解该国人工智能领域中使用的几种机器学习和深度学习技术及其应用的主题领域。此外,根据国家需求,该研究可为国家人工智能战略的制定和实施提供重要知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce8a/11753225/8e9675b29b0d/frai-07-1479855-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验