Suppr超能文献

基于骨骼的步态序列和足底压力图像数据集进行肌肉减少症诊断。

Sarcopenia diagnosis using skeleton-based gait sequence and foot-pressure image datasets.

作者信息

Naseem Muhammad Tahir, Kim Na-Hyun, Seo Haneol, Lee JaeMok, Chung Chul-Min, Shin Sunghoon, Lee Chan-Su

机构信息

Laboratory of Computer Vision and Human Visual Perception, Department of Electronic Engineering, Yeungnam University, Gyeongsan, Republic of Korea.

Sport Science Major, School of Kinesiology, Yeungnam University, Gyeongsan, Republic of Korea.

出版信息

Front Public Health. 2024 Nov 27;12:1443188. doi: 10.3389/fpubh.2024.1443188. eCollection 2024.

Abstract

INTRODUCTION

Sarcopenia is a common age-related disease, defined as a decrease in muscle strength and function owing to reduced skeletal muscle. One way to diagnose sarcopenia is through gait analysis and foot-pressure imaging.

MOTIVATION AND RESEARCH GAP

We collected our own multimodal dataset from 100 subjects, consisting of both foot-pressure and skeleton data with real patients, which provides a unique resource for future studies aimed at more comprehensive analyses. While artificial intelligence has been employed for sarcopenia detection, previous studies have predominantly focused on skeleton-based datasets without exploring the combined potential of skeleton and foot pressure dataset. This study conducts separate experiments for foot-pressure and skeleton datasets, it demonstrates the potential of each data type in sarcopenia classification.

METHODS

This study had two components. First, we collected skeleton and foot-pressure datasets and classified them into sarcopenia and non-sarcopenia groups based on grip strength, gait performance, and appendicular skeletal muscle mass. Second, we performed experiments on the foot-pressure dataset using the ResNet-18 and spatiotemporal graph convolutional network (ST-GCN) models on the skeleton dataset to classify normal and abnormal gaits due to sarcopenia. For an accurate diagnosis, real-time walking of 100 participants was recorded at 30 fps as RGB + D images. The skeleton dataset was constructed by extracting 3D skeleton information comprising 25 feature points from the image, whereas the foot-pressure dataset was constructed by exerting pressure on the foot-pressure plates.

RESULTS

As a baseline evaluation, the accuracies of sarcopenia classification performance from foot-pressure image using Resnet-18 and skeleton sequences using ST-GCN were identified as 77.16 and 78.63%, respectively.

DISCUSSION

The experimental results demonstrated the potential applications of sarcopenia and non-sarcopenia classifications based on foot-pressure images and skeleton sequences.

摘要

引言

肌肉减少症是一种常见的与年龄相关的疾病,定义为由于骨骼肌减少导致肌肉力量和功能下降。诊断肌肉减少症的一种方法是通过步态分析和足底压力成像。

动机与研究差距

我们从100名受试者中收集了自己的多模态数据集,其中包括真实患者的足底压力和骨骼数据,这为未来旨在进行更全面分析的研究提供了独特的资源。虽然人工智能已被用于肌肉减少症的检测,但以前的研究主要集中在基于骨骼的数据集上,而没有探索骨骼和足底压力数据集的联合潜力。本研究对足底压力和骨骼数据集进行了单独实验,展示了每种数据类型在肌肉减少症分类中的潜力。

方法

本研究有两个部分。首先,我们收集了骨骼和足底压力数据集,并根据握力、步态表现和四肢骨骼肌质量将它们分为肌肉减少症组和非肌肉减少症组。其次,我们在足底压力数据集上使用ResNet-18模型进行实验,并在骨骼数据集上使用时空图卷积网络(ST-GCN)模型来对由于肌肉减少症导致的正常和异常步态进行分类。为了进行准确诊断,以30帧/秒的速度记录了100名参与者的实时行走情况,作为RGB+D图像。骨骼数据集是通过从图像中提取包含25个特征点的3D骨骼信息构建的,而足底压力数据集是通过在足底压力板上施加压力构建的。

结果

作为基线评估,使用Resnet-18的足底压力图像和使用ST-GCN的骨骼序列进行肌肉减少症分类性能的准确率分别确定为77.16%和78.63%。

讨论

实验结果证明了基于足底压力图像和骨骼序列进行肌肉减少症和非肌肉减少症分类的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5c2/11631742/b6f810fa3fe6/fpubh-12-1443188-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验