Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstrasse 25, Innsbruck A-6020, Austria.
Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
Int J Mol Sci. 2019 Sep 6;20(18):4383. doi: 10.3390/ijms20184383.
We study the reactivity of misonidazole with low-energy electrons in a water environment combining experiment and theoretical modelling. The environment is modelled by sequential hydration of misonidazole clusters in vacuum. The well-defined experimental conditions enable computational modeling of the observed reactions. While the NO 2 - dissociative electron attachment channel is suppressed, as also observed previously for other molecules, the OH - channel remains open. Such behavior is enabled by the high hydration energy of OH - and ring formation in the neutral radical co-fragment. These observations help to understand the mechanism of bio-reductive drug action. Electron-induced formation of covalent bonds is then important not only for biological processes but may find applications also in technology.
我们通过实验和理论建模相结合的方式,研究了米唑氮芥在水环境中与低能电子的反应性。环境通过米唑簇在真空中的顺序水合来模拟。明确的实验条件使观察到的反应的计算建模成为可能。虽然与以前观察到的其他分子一样,NO 2 - 解离电子附加通道被抑制,但 OH - 通道仍然是开放的。这种行为是由 OH - 的高水合能和中性自由基碎片中环的形成所允许的。这些观察结果有助于理解生物还原药物作用的机制。电子诱导形成共价键不仅对生物过程很重要,而且在技术中也可能有应用。