Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
Laboratory of Advanced Microscopy and Biophotonics, NHLBI, NIH, Bethesda, MD, 20892, USA.
J Physiol. 2019 Nov;597(22):5411-5428. doi: 10.1113/JP278611. Epub 2019 Oct 10.
We developed a novel metabolic imaging approach that provides direct measures of the rate of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). Measures of mitochondrial NADH flux by mitoRACE are sensitive to physiological and pharmacological perturbations in vivo. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells with potential for broad applications in the study of energy metabolism.
Mitochondria play a critical role in numerous cell types and diseases, and structure and function of mitochondria can vary greatly among cells or within different regions of the same cell. However, there are currently limited methodologies that provide direct assessments of mitochondrial function in vivo, and contemporary measures of mitochondrial energy conversion lack the spatial resolution necessary to address cellular and subcellular heterogeneity. Here, we describe a novel metabolic imaging approach that provides direct measures of mitochondrial energy conversion with single-cell and subcellular resolution by evaluating NADH autofluorescence kinetics during the mitochondrial redox after cyanide experiment (mitoRACE). MitoRACE measures the rate of NADH flux through the steady-state mitochondrial NADH pool by rapidly inhibiting mitochondrial energetic flux, resulting in an immediate, linear increase in NADH fluorescence proportional to the steady-state NADH flux rate, thereby providing a direct measure of mitochondrial NADH flux. The experiments presented here demonstrate the sensitivity of this technique to detect physiological and pharmacological changes in mitochondrial flux within tissues of living animals and reveal the unique capability of this technique to evaluate mitochondrial function with single-cell and subcellular resolution in different cell types in vivo and in cell culture. Furthermore, we highlight the potential applications of mitoRACE by showing that within single neurons, mitochondria in neurites have higher energetic flux rates than mitochondria in the cell body. Metabolic imaging with mitoRACE provides a highly adaptable platform for evaluating mitochondrial function in vivo and in single cells, with potential for broad applications in the study of energy metabolism.
我们开发了一种新的代谢成像方法,通过评估氰化物实验后线粒体氧化还原过程中的 NADH 自发荧光动力学(mitoRACE),以单细胞和亚细胞分辨率提供直接测量线粒体能量转换率的方法。通过 mitoRACE 测量的线粒体 NADH 通量对体内和体内的生理和药理学扰动敏感。mitoRACE 的代谢成像为评估体内和单细胞中线粒体功能提供了一个高度适应的平台,具有广泛应用于能量代谢研究的潜力。
线粒体在许多细胞类型和疾病中发挥着关键作用,并且线粒体的结构和功能在细胞之间或同一细胞的不同区域可能有很大差异。然而,目前用于直接评估体内线粒体功能的方法有限,并且当代测量线粒体能量转换的方法缺乏解决细胞和亚细胞异质性所需的空间分辨率。在这里,我们描述了一种新的代谢成像方法,通过评估氰化物实验后线粒体氧化还原过程中的 NADH 自发荧光动力学(mitoRACE),以单细胞和亚细胞分辨率提供直接测量线粒体能量转换率的方法。mitoRACE 通过快速抑制线粒体能量通量来测量稳态线粒体 NADH 池中的 NADH 通量率,从而导致 NADH 荧光的立即、线性增加,与稳态 NADH 通量率成正比,从而提供线粒体 NADH 通量的直接测量。这里呈现的实验表明,该技术对检测活体动物组织中线粒体通量的生理和药理学变化具有敏感性,并揭示了该技术在不同细胞类型的体内和细胞培养中以单细胞和亚细胞分辨率评估线粒体功能的独特能力。此外,我们通过显示神经突中的线粒体比细胞体中的线粒体具有更高的能量通量率,突出了 mitoRACE 的潜在应用。mitoRACE 的代谢成像为评估体内和单细胞中线粒体功能提供了一个高度适应的平台,具有广泛应用于能量代谢研究的潜力。