Suppr超能文献

用于生物集成电子学的灵活可伸缩天线。

Flexible and Stretchable Antennas for Biointegrated Electronics.

机构信息

Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.

Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.

出版信息

Adv Mater. 2020 Apr;32(15):e1902767. doi: 10.1002/adma.201902767. Epub 2019 Sep 6.

Abstract

Combined advances in material science, mechanical engineering, and electrical engineering form the foundations of thin, soft electronic/optoelectronic platforms that have unique capabilities in wireless monitoring and control of various biological processes in cells, tissues, and organs. Miniaturized, stretchable antennas represent an essential link between such devices and external systems for control, power delivery, data processing, and/or communication. Applications typically involve a demanding set of considerations in performance, size, and stretchability. Some of the most effective strategies rely on unusual materials such as liquid metals, nanowires, and woven textiles or on optimally configured 2D/3D structures such as serpentines and helical coils of conventional materials. In the best cases, the performance metrics of small, stretchable, radio frequency (RF) antennas realized using these strategies compare favorably to those of traditional devices. Examples range from dipole, monopole, and patch antennas for far-field RF operation, to magnetic loop antennas for near-field communication (NFC), where the key parameters include operating frequency, Q factor, radiation pattern, and reflection coefficient S across a range of mechanical deformations and cyclic loads. Despite significant progress over the last several years, many challenges and associated research opportunities remain in the development of high-efficiency antennas for biointegrated electronic/optoelectronic systems.

摘要

材料科学、机械工程和电气工程的综合进步为薄型、柔软的电子/光电平台奠定了基础,这些平台在细胞、组织和器官中各种生物过程的无线监测和控制方面具有独特的能力。小型可拉伸天线是这些设备与外部系统之间进行控制、供电、数据处理和/或通信的重要环节。应用通常涉及性能、尺寸和可拉伸性方面的一系列苛刻考虑因素。一些最有效的策略依赖于不常见的材料,如液态金属、纳米线和编织纺织品,或者依赖于经过优化配置的 2D/3D 结构,如常规材料的蛇形和螺旋形线圈。在最好的情况下,使用这些策略实现的小型可拉伸射频 (RF) 天线的性能指标可与传统设备相媲美。示例包括远场 RF 操作的偶极子、单极子和贴片天线,以及近场通信 (NFC) 的磁环天线,其中关键参数包括工作频率、Q 因子、辐射模式和在一系列机械变形和循环负载下的反射系数 S。尽管在过去几年取得了重大进展,但在生物集成电子/光电系统的高效天线开发方面仍存在许多挑战和相关的研究机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验