Center for Genetic Medicine, Bluhm Cardiovascular Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
Sci Adv. 2024 Sep 13;10(37):eado7089. doi: 10.1126/sciadv.ado7089. Epub 2024 Sep 11.
Engineered heart tissues (EHTs) generated from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent powerful platforms for human cardiac research, especially in drug testing and disease modeling. Here, we report a flexible, three-dimensional electronic framework that enables real-time, spatiotemporal analysis of electrophysiologic and mechanical signals in EHTs under physiological loading conditions for dynamic, noninvasive, longer-term assessments. These electromechanically monitored EHTs support multisite measurements throughout the tissue under baseline conditions and in response to stimuli. Demonstrations include uses in tracking physiological responses to pharmacologically active agents and in capturing electrophysiological characteristics of reentrant arrhythmias. This platform facilitates precise analysis of signal location and conduction velocity in human cardiomyocyte tissues, as the basis for a broad range of advanced cardiovascular studies.
基于人诱导多能干细胞分化而来的心肌细胞(hiPSC-CMs)的工程心脏组织(EHTs)为人类心脏研究提供了强大的平台,尤其在药物测试和疾病建模方面。在此,我们报道了一个灵活的三维电子框架,该框架可在生理负荷条件下实时、时空分析 EHTs 的电生理和机械信号,从而实现动态、非侵入式、更长期的评估。这些电机械监测的 EHTs 在基线条件下以及响应刺激时,支持整个组织的多点测量。演示包括用于跟踪对药理活性药物的生理反应,以及捕捉折返性心律失常的电生理特征。该平台促进了对人心肌细胞组织中信号位置和传导速度的精确分析,为广泛的心血管研究奠定了基础。