QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, 55128 Mainz, Germany.
School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland.
Phys Rev Lett. 2019 Aug 23;123(8):080602. doi: 10.1103/PhysRevLett.123.080602.
We realize a heat engine using a single-electron spin as a working medium. The spin pertains to the valence electron of a trapped ^{40}Ca^{+} ion, and heat reservoirs are emulated by controlling the spin polarization via optical pumping. The engine is coupled to the ion's harmonic-oscillator degree of freedom via spin-dependent optical forces. The oscillator stores the work produced by the heat engine and, therefore, acts as a flywheel. We characterize the state of the flywheel by reconstructing the Husimi Q function of the oscillator after different engine run times. This allows us to infer both the deposited energy and the corresponding fluctuations throughout the onset of operation, starting in the oscillator ground state. In order to understand the energetics of the flywheel, we determine its ergotropy, i.e., the maximum amount of work which can be further extracted from it. Our results demonstrate how the intrinsic fluctuations of a microscopic heat engine fundamentally limit performance.
我们利用单电子自旋作为工作介质实现了一种热机。自旋属于被捕获的 ^{40}Ca^{+}离子的价电子,通过光泵浦控制自旋极化来模拟热库。发动机通过与离子的简谐振动自由度相关的自旋相关光力耦合在一起。振荡器存储热机产生的功,因此充当飞轮。我们通过在不同的发动机运行时间后重建振荡器的 Husimi Q 函数来描述飞轮的状态。这使我们能够推断在开始运行时,从振荡器的基态开始,能量的沉积和相应的波动。为了了解飞轮的能量学,我们确定了它的耗散熵,即可以从它中进一步提取的最大功。我们的结果表明微观热机的固有波动如何从根本上限制了性能。