Institut für Physik, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, D-12489 Berlin, Germany.
Department of Physics, Duke University, Durham, North Carolina 27708, USA.
Phys Rev Lett. 2019 Aug 2;123(5):051603. doi: 10.1103/PhysRevLett.123.051603.
We study the O(4) Wilson-Fisher fixed point in 2+1 dimensions in fixed large-charge sectors identified by products of two spin-j representations (j_{L},j_{R}). Using effective field theory we derive a formula for the conformal dimensions D(j_{L},j_{R}) of the leading operator in terms of two constants, c_{3/2} and c_{1/2}, when the sum j_{L}+j_{R} is much larger than the difference |j_{L}-j_{R}|. We compute D(j_{L},j_{R}) when j_{L}=j_{R} with Monte Carlo calculations in a discrete formulation of the O(4) lattice field theory, and show excellent agreement with the predicted formula and estimate c_{3/2}=1.068(4) and c_{1/2}=0.083(3).
我们研究了 2+1 维中的 O(4)威尔逊-费舍尔不动点,在该空间中,通过两个自旋-j 表示(j_{L},j_{R})的乘积来确定固定大电荷区域。我们使用有效场论推导出了一个公式,用于根据两个常数 c_{3/2} 和 c_{1/2},计算当 j_{L}+j_{R} 远大于 j_{L}-j_{R}| 时,主导算子的共形维数 D(j_{L},j_{R})。我们通过在 O(4)格点场论的离散形式中进行蒙特卡罗计算,计算了当 j_{L}=j_{R} 时的 D(j_{L},j_{R}),并与预测公式进行了很好的吻合,同时估计出 c_{3/2}=1.068(4) 和 c_{1/2}=0.083(3)。