Suppr超能文献

氢营养型产甲烷菌是成功进行生物强化以缓解高温厌氧消化中氨抑制的关键。

Hydrogenotrophic methanogens are the key for a successful bioaugmentation to alleviate ammonia inhibition in thermophilic anaerobic digesters.

机构信息

Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark; Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, Singapore 138602, Singapore.

Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet Bygning 115, 2800 Kgs. Lyngby, Denmark.

出版信息

Bioresour Technol. 2019 Dec;293:122070. doi: 10.1016/j.biortech.2019.122070. Epub 2019 Aug 27.

Abstract

Bioaugmentation to alleviate ammonia inhibition under thermophilic anaerobic digestion has never been reported, as well as the working mechanism that allows a fast and successful bioaugmentation. Thus two bioaugmentation inocula (an enriched culture, and a mixed culture composed 50/50 by Methanoculleus thermophilus and the enriched culture) on the recovery of ammonia-inhibited thermophilic continuous reactors was assessed. The results showed that bioaugmentation improved methane yield by 11-13% and decreased the volatile fatty acids (VFA) by 45-52% compared to the control reactor (abiotic augmentation). Moreover, the importance of hydrogenotrophic methanogens to a fast and successful bioaugmentation was recognized. Specifically, the instant hydrogen partial pressure reduction by the bioaugmented hydrogenotroph created thermodynamically favourable conditions for the acetate oxidation process and consequently, the catabolism of other VFA. High-throughput sequencing results strengthened this explanation by showing that the bioaugmented M. thermophilus stimulated the growth of syntrophic acetate oxidising bacterium Thermacetogenium phaeum, immediately after bioaugmentation.

摘要

生物强化缓解高温厌氧消化中的氨抑制从未被报道过,也没有阐明使生物强化快速和成功的工作机制。因此,评估了两种生物强化接种物(富集培养物和由产甲烷微菌和富集培养物以 50/50 组成的混合培养物)对恢复氨抑制的高温连续反应器的效果。结果表明,与对照反应器(非生物强化)相比,生物强化使甲烷产率提高了 11-13%,挥发性脂肪酸(VFA)降低了 45-52%。此外,还认识到氢营养型产甲烷菌对快速和成功的生物强化的重要性。具体来说,生物强化的氢营养型产甲烷菌即时降低氢分压为乙酸氧化过程创造了热力学有利条件,从而使其他 VFA 的分解代谢成为可能。高通量测序结果通过显示生物强化后的产甲烷微菌立即刺激了协同乙酸氧化菌 Thermacetogenium phaeum 的生长,进一步证实了这一解释。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验