Suppr超能文献

嗜热芽孢杆菌中 EPS 结合黄素介导的电子传递

EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp.

机构信息

Department of Biotechnology, G.M. Institute of Technology, Davangere, 577006, India.

Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb BhimraoAmbedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India.

出版信息

Microbiol Res. 2019 Dec;229:126324. doi: 10.1016/j.micres.2019.126324. Epub 2019 Aug 24.

Abstract

Through extracellular electron transfer (EET), bacteria are capable of transforming different insoluble materials of geochemical interest into energy-rich molecules for their growth. For this process, bacteria have been depending directly or indirectly on molecules synthesized within the cells or by various synthetics as mediators. Herein, we studied the in-situ change in electrochemistry and supporting components for EET in the extracellular polysaccharide (EPS) producing biofilm of thermophilic Geobacillus sp. The CV and DPV resultsrevealed that the intact biofilm of bacteria was not able to generate any potential at 25 °C /- ≤50 °C. However, at 55 °C (optimal condition), the potential occurred drastically after the EPS production by bacteria. HPLC and MALDI-TOF results revealed that the presence of Flavins, which can able adsorbed to the electrodes from the cell surface. Moreover, the temperature-dependent EPS production and originally conceived ability of flavins to act as electron shuttles suggest that not much complexity in bacteria with minerals. Additionally, the electrochemical potential was severely affected upon removal of EPS/flavin moiety from the intact biofilm, revealed the necessity of EPS bound flavins in transferring the electrons across its thick cell walls. This paradigm shift to electrogenic nature of Geobacillus sp. biofilm will become evident in the adaptation of other microbes during mineral respiration in extreme environments.

摘要

通过细胞外电子传递 (EET),细菌能够将不同的地球化学感兴趣的不溶性物质转化为富含能量的分子,以供其生长。对于这个过程,细菌直接或间接地依赖于细胞内合成的分子或各种合成的物质作为媒介。在这里,我们研究了产热地杆菌胞外多糖 (EPS) 产生生物膜中 EET 的电化学和支持组件的原位变化。CV 和 DPV 结果表明,在 25°C/-≤50°C 时,完整的细菌生物膜不能产生任何电位。然而,在 55°C(最佳条件)下,细菌产生 EPS 后,电位急剧发生。HPLC 和 MALDI-TOF 结果表明,黄素的存在,其可以从细胞表面被吸附到电极上。此外,温度依赖性的 EPS 产生和黄素作为电子穿梭体的原始设想能力表明,细菌与矿物质之间的复杂性不大。此外,从完整生物膜中去除 EPS/黄素部分后,电化学电位受到严重影响,这表明在 EPS 结合的黄素在穿过其厚厚的细胞壁传递电子方面是必要的。这种对地杆菌生物膜的电生成性质的范式转变将在极端环境中其他微生物进行矿物呼吸时变得明显。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验