Zhao Guihu, Denisova Kristina, Sehatpour Pejman, Long Jun, Gui Weihua, Qiao Jianping, Javitt Daniel C, Wang Zhishun
School of Information Science and Engineering, Central South University, Changsha 410083, China.
Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY 10032, United States of America.
PLoS One. 2016 May 13;11(5):e0155415. doi: 10.1371/journal.pone.0155415. eCollection 2016.
A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D) fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci) in subcortical gray matter (GM) in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD), a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth) surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales) of subcortical GM in this disorder. Probabilistic (entropy-based) information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR) images in chronic patients with schizophrenia (n = 19) and age-matched healthy controls (n = 19) (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old). We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0)), the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1)), as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473)) in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in schizophrenia.
适应性推理失败——即错误解读可用的感官信息以进行适当的感知和行动——是精神分裂症临床表现的核心,这涉及大脑中的关键皮质下结构,包括海马体。我们使用高分辨率三维(3D)分形几何分析来研究精神分裂症患者相对于健康个体的皮质下灰质(GM)中细微的且可能具有生物学相关性的结构改变(在突起、脑回的几何形状以及凹陷、脑沟方面)。具体而言,我们专注于利用分形维数(FD),这是一种紧凑的形状描述符,可使用具有不规则(即不一定光滑)表面的输入来计算,以便量化这种疾病中皮质下GM的复杂性(跨空间尺度的结构的几何特性和配置)。基于盒计数法,针对慢性精神分裂症患者(n = 19)和年龄匹配的健康对照(n = 19)(年龄范围:患者为22.7 - 54.3岁,健康对照为24.9 - 51.6岁)双侧的七个皮质下结构以及脑干,从高分辨率磁共振(MR)图像中计算概率性(基于熵)信息FD。我们发现,相对于健康个体,精神分裂症患者的左侧海马体(中位数:2.1460,范围:2.07 - 2.18,而健康对照中位数:2.1730,范围:2.15 - 2.23,p < 0.001;科恩效应大小,U3 = 0.8158(95%置信区间,CIs:0.6316,1.0))、右侧海马体(中位数:2.1430,范围:2.05 - 2.19,而健康对照中位数:2.1760,范围:2.12 - 2.21,p = 0.004;U3 = 0.8421(CIs:0.5263,1))以及左侧丘脑(中位数:2.4230,范围:2.40 - 2.44,p = 0.005;U3 = 0.7895(CIs:0.5789,0.9473))的FD显著降低。我们的研究结果为海马体表面复杂性降低提供了体内定量证据,FD降低表明在精神分裂症中检测到的GM表面不太复杂、不太规则。