Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
State Key Laboratory of Analog and Mixed Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China.
Nat Commun. 2019 Sep 6;10(1):4049. doi: 10.1038/s41467-019-12089-6.
Food production in green crops is severely limited by low activity and poor specificity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in natural photosynthesis (NPS). This work presents a scientific solution to overcome this problem by immobilizing RuBisCO into a microfluidic reactor, which demonstrates a continuous production of glucose precursor at 13.8 μmol g RuBisCO min from CO and ribulose-1,5-bisphosphate. Experiments show that the RuBisCO immobilization significantly enhances enzyme stabilities (7.2 folds in storage stability, 6.7 folds in thermal stability), and also improves the reusability (90.4% activity retained after 5 cycles of reuse and 78.5% after 10 cycles). This work mimics the NPS pathway with scalable microreactors for continuous synthesis of glucose precursor using very small amount of RuBisCO. Although still far from industrial production, this work demonstrates artificial synthesis of basic food materials by replicating the light-independent reactions of NPS, which may hold the key to food crisis relief and future space colonization.
绿色作物的粮食生产受到自然光合作用(NPS)中 D-核酮糖-1,5-二磷酸羧化酶/加氧酶(RuBisCO)活性低和特异性差的严重限制。本工作通过将 RuBisCO 固定在微流反应器中,提供了一种科学的解决方案来克服这一问题,该反应器可连续从 CO 和核酮糖-1,5-二磷酸生产葡萄糖前体,产率为 13.8μmol·g RuBisCO·min。实验表明,RuBisCO 的固定化显著提高了酶的稳定性(储存稳定性提高了 7.2 倍,热稳定性提高了 6.7 倍),并提高了可重复使用性(重复使用 5 次后保留 90.4%的活性,重复使用 10 次后保留 78.5%的活性)。本工作使用微反应器模拟 NPS 途径,以非常少量的 RuBisCO 连续合成葡萄糖前体。尽管距离工业生产还很远,但这项工作通过复制 NPS 的非依赖光照反应来展示了基本食物材料的人工合成,这可能是解决粮食危机和未来太空殖民的关键。