Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
KWS SAAT SE, Einbeck, Germany.
Nature. 2019 Feb;566(7742):131-135. doi: 10.1038/s41586-019-0880-5. Epub 2019 Jan 23.
Cells use compartmentalization of enzymes as a strategy to regulate metabolic pathways and increase their efficiency. The α- and β-carboxysomes of cyanobacteria contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)-a complex of eight large (RbcL) and eight small (RbcS) subunits-and carbonic anhydrase. As HCO can diffuse through the proteinaceous carboxysome shell but CO cannot, carbonic anhydrase generates high concentrations of CO for carbon fixation by Rubisco. The shell also prevents access to reducing agents, generating an oxidizing environment. The formation of β-carboxysomes involves the aggregation of Rubisco by the protein CcmM, which exists in two forms: full-length CcmM (M58 in Synechococcus elongatus PCC7942), which contains a carbonic anhydrase-like domain followed by three Rubisco small subunit-like (SSUL) modules connected by flexible linkers; and M35, which lacks the carbonic anhydrase-like domain. It has long been speculated that the SSUL modules interact with Rubisco by replacing RbcS. Here we have reconstituted the Rubisco-CcmM complex and solved its structure. Contrary to expectation, the SSUL modules do not replace RbcS, but bind close to the equatorial region of Rubisco between RbcL dimers, linking Rubisco molecules and inducing phase separation into a liquid-like matrix. Disulfide bond formation in SSUL increases the network flexibility and is required for carboxysome function in vivo. Notably, the formation of the liquid-like condensate of Rubisco is mediated by dynamic interactions with the SSUL domains, rather than by low-complexity sequences, which typically mediate liquid-liquid phase separation in eukaryotes. Indeed, within the pyrenoids of eukaryotic algae, the functional homologues of carboxysomes, Rubisco adopts a liquid-like state by interacting with the intrinsically disordered protein EPYC1. Understanding carboxysome biogenesis will be important for efforts to engineer CO-concentrating mechanisms in plants.
细胞利用酶的区室化作为一种策略来调节代谢途径并提高其效率。蓝细菌的α-和β-羧化体包含核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)-由八个大亚基(RbcL)和八个小亚基(RbcS)组成的复合物-和碳酸酐酶。由于 HCO 可以通过蛋白羧化体壳扩散,但 CO 不能,碳酸酐酶为 Rubisco 的碳固定生成高浓度的 CO。壳还防止还原剂进入,产生氧化环境。β-羧化体的形成涉及 Rubisco 由蛋白 CcmM 聚合,CcmM 存在两种形式:全长 CcmM(Synechococcus elongatus PCC7942 中的 M58),含有碳酸酐酶样结构域,其后是三个 Rubisco 小亚基样(SSUL)模块,通过柔性接头连接;和 M35,缺乏碳酸酐酶样结构域。长期以来,人们一直推测 SSUL 模块通过取代 RbcS 与 Rubisco 相互作用。在这里,我们重建了 Rubisco-CcmM 复合物并解决了其结构。与预期相反,SSUL 模块不取代 RbcS,而是结合在 Rubisco 二聚体之间的赤道区域附近,连接 Rubisco 分子并诱导相分离成液态基质。SSUL 中的二硫键形成增加了网络的灵活性,是体内羧化体功能所必需的。值得注意的是,Rubisco 的液态凝结物的形成是通过与 SSUL 结构域的动态相互作用介导的,而不是通过通常在真核生物中介导液-液相分离的低复杂度序列。事实上,在真核藻类的淀粉核中,羧化体的功能同源物 Rubisco 通过与内在无序蛋白 EPYC1 相互作用,采用液态状态。了解羧化体的生物发生对于在植物中工程化 CO 浓缩机制的努力将是重要的。