Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Mol Syst Biol. 2018 Jun 21;14(6):e8157. doi: 10.15252/msb.20178157.
The ecological forces that govern the assembly and stability of the human gut microbiota remain unresolved. We developed a generalizable model-guided framework to predict higher-dimensional consortia from time-resolved measurements of lower-order assemblages. This method was employed to decipher microbial interactions in a diverse human gut microbiome synthetic community. We show that pairwise interactions are major drivers of multi-species community dynamics, as opposed to higher-order interactions. The inferred ecological network exhibits a high proportion of negative and frequent positive interactions. Ecological drivers and responsive recipient species were discovered in the network. Our model demonstrated that a prevalent positive and negative interaction topology enables robust coexistence by implementing a negative feedback loop that balances disparities in monospecies fitness levels. We show that negative interactions could generate history-dependent responses of initial species proportions that frequently do not originate from bistability. Measurements of extracellular metabolites illuminated the metabolic capabilities of monospecies and potential molecular basis of microbial interactions. In sum, these methods defined the ecological roles of major human-associated intestinal species and illuminated design principles of microbial communities.
目前,我们尚未完全了解控制人类肠道微生物组组装和稳定的生态力量。我们开发了一种可推广的基于模型的框架,用于从低阶组合的时间分辨测量中预测更高阶的联合体。该方法用于破译多样化的人类肠道微生物组合成群落中的微生物相互作用。我们表明,种间相互作用是多物种群落动态的主要驱动因素,而不是更高阶的相互作用。推断出的生态网络显示出高比例的负相互作用和频繁的正相互作用。在网络中发现了生态驱动因素和响应的受体物种。我们的模型表明,普遍存在的正相互作用和负相互作用拓扑结构通过实施负反馈回路来实现稳健的共存,从而平衡单物种适应性水平的差异。我们表明,负相互作用可以产生初始物种比例的历史依赖性响应,而这些响应通常不是由双稳态引起的。对细胞外代谢物的测量阐明了单物种的代谢能力和微生物相互作用的潜在分子基础。总之,这些方法定义了主要与人类相关的肠道物种的生态作用,并阐明了微生物群落的设计原则。