Suppr超能文献

法国巴黎不同交通情景下降低 PM 浓度对人类死亡率的影响。

Impacts on human mortality due to reductions in PM concentrations through different traffic scenarios in Paris, France.

机构信息

Sorbonne Université, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique, F75013 Paris, France.

UTC Sorbonne Université, Université de Technologie de Compiegne, EA 7284 Avenues, Centre Pierre Guillaumat, CS 60319-60203 Compeigne, France.

出版信息

Sci Total Environ. 2020 Jan 1;698:134257. doi: 10.1016/j.scitotenv.2019.134257. Epub 2019 Sep 2.

Abstract

OBJECTIVES

Air pollution is a well-known burden for population health and health systems worldwide. Reduction in air pollution is associated with improvements in mortality and rates of respiratory, cardiovascular and other diseases. Though air quality is a problem globally, efforts to lower air pollutant concentrations are usually regional or local. In industrialized countries, most urban air pollution is caused by vehicles, suggesting reductions in traffic would result in reductions of pollution. However, detailed data on how such reductions can be achieved and impact public health is just beginning to emerge, and other influencing factors, including vehicle flow or urban landscape are largely unaccounted for.

METHODS

We utilized a unique combination of vehicle emission measurements combined with simulations of traffic and vehicle variations, as well as urban topographies, to quantify health impacts of PM reduction in a single district of Paris, France, for various methods of traffic improvement. Here we rank and evaluate improvements in non-accidental mortality for thirteen possible scenarios to reduce traffic related PM emissions.

RESULTS

The maximum impact scenario requires all passenger vehicles to meet Euro 5 standards and excludes diesel vehicles, resulting in long-term decreases in non-accidental mortality of 148.79 people per year, or 104.40 per 100,000 people. Similar reductions hold for the scenario requiring a completely electric passenger fleet, with long-term annual reductions of 137.14 premature mortalities. Removing all diesel vehicles is the third most impactful scenario, preventing 135.55 deaths yearly.

DISCUSSION

PARTLESS provides comparisons between thirteen different traffic-related air quality reduction mechanisms in terms of improvements in mortality rates. Improving emissions standards, increasing electric vehicle use and removing diesel vehicles can prevent more than 148 deaths per year in this district alone. Further improvements in mortality reduction may require changes to the composition of vehicle components, asphalt or to the management of resuspended particulate matter.

摘要

目的

空气污染是全球人口健康和卫生系统的一个众所周知的负担。减少空气污染与死亡率的提高以及呼吸道、心血管和其他疾病的发病率的降低有关。尽管空气质量是一个全球性的问题,但降低空气污染物浓度的努力通常是区域性或地方性的。在工业化国家,大多数城市空气污染是由车辆造成的,这表明减少交通流量将导致污染减少。然而,关于如何实现这些减少以及对公共健康的影响的详细数据才刚刚开始出现,其他影响因素,包括车辆流量或城市景观,在很大程度上没有被考虑在内。

方法

我们利用车辆排放测量与交通和车辆变化的模拟以及城市地形的独特组合,来量化法国巴黎一个区减少 PM 对健康的影响,针对各种改善交通的方法。在这里,我们对十三种可能的情景进行排名和评估,以减少与交通相关的 PM 排放对非意外死亡率的改善。

结果

最大影响情景要求所有乘用车达到欧洲 5 号标准并排除柴油车,导致每年非意外死亡率减少 148.79 人,或每 10 万人减少 104.40 人。对于要求完全电动乘用车的情景,也有类似的减少,长期每年减少 137.14 例过早死亡。排除所有柴油车是第三大最具影响力的情景,每年可预防 135.55 人死亡。

讨论

PARTLESS 比较了十三种不同的与交通相关的空气质量改善机制在死亡率改善方面的情况。提高排放标准、增加电动汽车使用和排除柴油车每年仅在这个区就可以预防超过 148 人死亡。进一步提高死亡率降低的效果可能需要改变车辆部件、沥青或悬浮颗粒物的管理组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验