Suppr超能文献

关于球面约束稀疏盲反卷积的全局几何结构

On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution.

作者信息

Zhang Yuqian, Lau Yenson, Kuo Han-Wen, Cheung Sky, Pasupathy Abhay, Wright John

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):999-1008. doi: 10.1109/TPAMI.2019.2939237. Epub 2021 Feb 4.

Abstract

Blind deconvolution is the problem of recovering a convolutional kernel a and an activation signal x from their convolution [Formula: see text]. This problem is ill-posed without further constraints or priors. This paper studies the situation where the nonzero entries in the activation signal are sparsely and randomly populated. We normalize the convolution kernel to have unit Frobenius norm and cast the sparse blind deconvolution problem as a nonconvex optimization problem over the sphere. With this spherical constraint, every spurious local minimum turns out to be close to some signed shift truncation of the ground truth, under certain hypotheses. This benign property motivates an effective two stage algorithm that recovers the ground truth from the partial information offered by a suboptimal local minimum. This geometry-inspired algorithm recovers the ground truth for certain microscopy problems, also exhibits promising performance in the more challenging image deblurring problem. Our insights into the global geometry and the two stage algorithm extend to the convolutional dictionary learning problem, where a superposition of multiple convolution signals is observed.

摘要

盲反卷积是从卷积结果[公式:见正文]中恢复卷积核a和激活信号x的问题。如果没有进一步的约束或先验条件,这个问题是不适定的。本文研究激活信号中非零项稀疏且随机分布的情况。我们将卷积核归一化以使其具有单位Frobenius范数,并将稀疏盲反卷积问题转化为球面上的非凸优化问题。在某些假设下,有了这个球面约束,每个虚假的局部最小值都被证明接近真实值的某种符号移位截断。这种良性性质促使我们提出一种有效的两阶段算法,该算法能从次优局部最小值提供的部分信息中恢复真实值。这种受几何启发的算法能解决某些显微镜问题的真实值恢复,在更具挑战性的图像去模糊问题中也表现出有前景的性能。我们对全局几何和两阶段算法的见解扩展到了卷积字典学习问题,即在该问题中观察到多个卷积信号的叠加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验