Kappler Julian, Hinrichsen Victor B, Netz Roland R
Freie Universität Berlin, Fachbereich Physik, Berlin, Germany.
Eur Phys J E Soft Matter. 2019 Sep 10;42(9):119. doi: 10.1140/epje/i2019-11886-7.
We investigate non-Markovian barrier-crossing kinetics of a massive particle in one dimension in the presence of a memory function that is the sum of two exponentials with different memory times, [Formula: see text] and [Formula: see text] . Our Langevin simulations for the special case where both exponentials contribute equally to the total friction show that the barrier-crossing time becomes independent of the longer memory time if at least one of the two memory times is larger than the intrinsic diffusion time. When we associate memory effects with coupled degrees of freedom that are orthogonal to a one-dimensional reaction coordinate, this counterintuitive result shows that the faster orthogonal degrees of freedom dominate barrier-crossing kinetics in the non-Markovian limit and that the slower orthogonal degrees become negligible, quite contrary to the standard time-scale separation assumption and with important consequences for the proper setup of coarse-graining procedures in the non-Markovian case. By asymptotic matching and symmetry arguments, we construct a crossover formula for the barrier crossing time that is valid for general multi-exponential memory kernels. This formula can be used to estimate barrier-crossing times for general memory functions for high friction, i.e. in the overdamped regime, as well as for low friction, i.e. in the inertial regime. Typical examples where our results are important include protein folding in the high-friction limit and chemical reactions such as proton-transfer reactions in the low-friction limit.
我们研究了一维中大量粒子在存在记忆函数的情况下的非马尔可夫势垒穿越动力学,该记忆函数是两个具有不同记忆时间的指数函数之和,即[公式:见正文]和[公式:见正文]。我们针对两个指数函数对总摩擦力贡献相等的特殊情况进行的朗之万模拟表明,如果两个记忆时间中至少有一个大于本征扩散时间,则势垒穿越时间将与较长的记忆时间无关。当我们将记忆效应与与一维反应坐标正交的耦合自由度相关联时,这个违反直觉的结果表明,在非马尔可夫极限下,较快的正交自由度主导势垒穿越动力学,而较慢的正交自由度可忽略不计,这与标准的时间尺度分离假设截然不同,并且对非马尔可夫情况下粗粒化过程的正确设置具有重要影响。通过渐近匹配和对称性论证,我们构建了一个适用于一般多指数记忆核的势垒穿越时间的交叉公式。该公式可用于估计高摩擦(即过阻尼 regime)和低摩擦(即惯性 regime)下一般记忆函数的势垒穿越时间。我们的结果很重要的典型例子包括高摩擦极限下的蛋白质折叠以及低摩擦极限下的化学反应,如质子转移反应。