Chemistry Division, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, USA.
Center for Corrosion and Biofouling Control, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA.
Philos Trans R Soc Lond B Biol Sci. 2019 Oct 28;374(1784):20190203. doi: 10.1098/rstb.2019.0203. Epub 2019 Sep 9.
Concerns about the bioaccumulation of toxic antifouling compounds have necessitated the search for alternative strategies to combat marine biofouling. Because many biologically essential minerals have deleterious effects on organisms at high concentration, one approach to preventing the settlement of marine foulers is increasing the local concentration of ions that are naturally present in seawater. Here, we used surface-active borate glasses as a platform to directly deliver ions (Na, Mg and BO) to the adhesive interface under acorn barnacles (Amphibalanus (=Balanus) amphitrite). Additionally, surface-active glasses formed reaction layers at the glass-water interface, presenting another challenge to fouling organisms. Proteomics analysis showed that cement deposited on the gelatinous reaction layers is more soluble than cement deposited on insoluble glasses, indicating the reaction layer and/or released ions disrupted adhesion processes. Laboratory experiments showed that the majority (greater than 79%) of adult barnacles re-attached to silica-free borate glasses for 14 days could be released and, more importantly, barnacle larvae did not settle on the glasses. The formation of microbial biofilms in field tests diminished the performance of the materials. While periodic water jetting (120 psi) did not prevent the formation of biofilms, weekly cleaning did dramatically reduce macrofouling on magnesium aluminoborate glass to levels below a commercial foul-release coating. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
人们对有毒防污化合物的生物蓄积问题感到担忧,这促使人们寻找替代策略来对抗海洋生物附着。由于许多生物必需的矿物质在高浓度下对生物有有害影响,因此一种防止海洋附着物附着的方法是增加海水中天然存在的离子的局部浓度。在这里,我们使用表面活性硼酸盐玻璃作为平台,将离子(Na、Mg 和 BO)直接输送到藤壶(Amphibalanus(=Balanus)amphitrite)的粘性界面。此外,表面活性玻璃在玻璃-水界面形成反应层,这对附着生物构成了另一个挑战。蛋白质组学分析表明,在凝胶状反应层上沉积的水泥比在不溶性玻璃上沉积的水泥更易溶解,这表明反应层和/或释放的离子破坏了附着过程。实验室实验表明,在 14 天内,超过 79%的重新附着在无硅硼酸盐玻璃上的成年藤壶可以被释放,更重要的是,藤壶幼虫不会附着在玻璃上。在现场测试中,微生物生物膜的形成降低了材料的性能。虽然定期喷射水(120 psi)不能防止生物膜的形成,但每周清洁确实显著减少了镁铝硼酸盐玻璃上的大型附着物,使其水平低于商业防污释放涂层。本文是主题为“生物系统中粘附和粘合剂的跨学科方法”的一部分。