Suppr超能文献

法尼基化和甲基化 KRas4B 与钙调蛋白相互作用的结构基础。

The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin.

机构信息

Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.

Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.

出版信息

Structure. 2019 Nov 5;27(11):1647-1659.e4. doi: 10.1016/j.str.2019.08.009. Epub 2019 Sep 5.

Abstract

Ca-calmodulin (CaM) extracts KRas4B from the plasma membrane, suggesting that KRas4B/CaM interaction plays a role in regulating Ras signaling. To gain mechanistic insight, we provide a computational model, supported by experimental structural data, of farnesylated/methylated KRas4B interacting with CaM in solution and at anionic membranes including signaling lipids. Due to multiple interaction modes, we observe diverse conformational ensembles of the KRas4B-CaM complex. A highly populated conformation reveals the catalytic domain interacting with the N-lobe and the hypervariable region (HVR) wrapping around the linker with the farnesyl docking to the extended CaM's C-lobe pocket. Alternatively, KRas4B can interact with collapsed CaM with the farnesyl penetrating CaM's center. At anionic membranes, CaM interacts with the catalytic domain with large fluctuations, drawing the HVR. Signaling lipids establishing strong salt bridges with CaM prevent membrane departure. Membrane-interacting KRas4B-CaM complex can productively recruit phosphatidylinositol 3-kinase α (PI3Kα) to the plasma membrane, serving as a coagent in activating PI3Kα/Akt signaling.

摘要

钙调蛋白(CaM)将 KRas4B 从质膜中提取出来,这表明 KRas4B/CaM 相互作用在调节 Ras 信号转导中发挥作用。为了深入了解其机制,我们提供了一个计算模型,该模型得到了实验结构数据的支持,描述了法尼基化/甲基化的 KRas4B 与溶液中和带信号脂质的阴离子膜中的 CaM 相互作用的情况。由于存在多种相互作用模式,我们观察到了 KRas4B-CaM 复合物的多种构象集合。一种高丰度的构象揭示了催化结构域与 N-结构域相互作用,以及超变区(HVR)与连接子缠绕,法尼基与延伸的 CaM 的 C-结构域口袋对接。或者,KRas4B 可以与折叠的 CaM 相互作用,法尼基穿过 CaM 的中心。在阴离子膜上,CaM 与催化结构域之间存在较大的波动,从而拉动 HVR。与 CaM 建立强盐桥的信号脂质可防止膜的脱离。与膜相互作用的 KRas4B-CaM 复合物可以有效地将磷脂酰肌醇 3-激酶 α(PI3Kα)募集到质膜上,作为激活 PI3Kα/Akt 信号的共激活剂。

相似文献

4
Structural basis of recognition of farnesylated and methylated KRAS4b by PDEδ.PDEδ对法尼基化和甲基化KRAS4b识别的结构基础
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6766-E6775. doi: 10.1073/pnas.1615316113. Epub 2016 Oct 17.
7
Calmodulin and IQGAP1 activation of PI3Kα and Akt in KRAS, HRAS and NRAS-driven cancers.钙调蛋白和 IQGAP1 激活 KRAS、HRAS 和 NRAS 驱动的癌症中的 PI3Kα 和 Akt。
Biochim Biophys Acta Mol Basis Dis. 2018 Jun;1864(6 Pt B):2304-2314. doi: 10.1016/j.bbadis.2017.10.032. Epub 2017 Oct 31.
8
Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes.膜上法尼基化、羧甲基化 KRAS4B 的组织。
J Mol Biol. 2019 Sep 6;431(19):3706-3717. doi: 10.1016/j.jmb.2019.07.025. Epub 2019 Jul 19.
10
PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b.PIP2 影响膜结合 KRAS4b 的构象动态。
Biochemistry. 2019 Aug 20;58(33):3537-3545. doi: 10.1021/acs.biochem.9b00395. Epub 2019 Aug 1.

引用本文的文献

9
Protein conformational ensembles in function: roles and mechanisms.发挥功能的蛋白质构象集合:作用与机制
RSC Chem Biol. 2023 Sep 5;4(11):850-864. doi: 10.1039/d3cb00114h. eCollection 2023 Nov 1.

本文引用的文献

1
The structural basis for Ras activation of PI3Kα lipid kinase.Ras 激活 PI3Kα 脂质激酶的结构基础。
Phys Chem Chem Phys. 2019 Jun 5;21(22):12021-12028. doi: 10.1039/c9cp00101h.
2
The mechanism of PI3Kα activation at the atomic level.PI3Kα在原子水平上的激活机制。
Chem Sci. 2019 Feb 20;10(12):3671-3680. doi: 10.1039/c8sc04498h. eCollection 2019 Mar 28.
9
Oncogenic KRas mobility in the membrane and signaling response.致癌性 KRas 在膜中的迁移和信号响应。
Semin Cancer Biol. 2019 Feb;54:109-113. doi: 10.1016/j.semcancer.2018.02.009. Epub 2018 Feb 27.
10
Interaction of Calmodulin with the cSH2 Domain of the p85 Regulatory Subunit.钙调蛋白与p85调节亚基的cSH2结构域的相互作用
Biochemistry. 2018 Mar 27;57(12):1917-1928. doi: 10.1021/acs.biochem.7b01130. Epub 2018 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验