Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland.
Institute of Material Chemistry, Division Physical Chemistry, TU Wien, Getreidemarkt 9/165, 1060 Wien, Austria.
Chem Commun (Camb). 2019 Oct 1;55(79):11833-11836. doi: 10.1039/c9cc05813c.
Au/TiO2 is a much-used catalyst for the conversion of ethanol to acetic acid. The proposed mechanism speaks of two essential reaction steps on the catalytic surface. The first is the ethanol to acetaldehyde and the second the acetaldehyde to acetic acid. When operating in the gas phase, acetic acid is usually absent. This work focuses on determining what triggers the second step by comparing the ethanol with acetaldehyde oxidation and the liquid with gas-phase reaction. We propose an updated reaction mechanism: acetaldehyde autoxidises non-catalytically to acetic acid, likely driven by radicals. The requirement for the autoxidation is the presence of oxygen and water in the liquid-phase. The understanding of the interplay between the catalytic ethanol to acetaldehyde and the following non-catalytic reaction step provides guiding principles for the design of new and more selective alcohol oxidation catalysts.
Au/TiO2 是将乙醇转化为乙酸的常用催化剂。所提出的机理谈到了催化表面上的两个基本反应步骤。第一步是乙醇到乙醛,第二步是乙醛到乙酸。在气相中操作时,通常不存在乙酸。这项工作侧重于通过比较乙醇与乙醛氧化以及液相与气相反应来确定触发第二步的原因。我们提出了一个更新的反应机理:乙醛在没有催化剂的情况下自氧化为乙酸,可能是由自由基驱动的。自氧化的要求是液相中存在氧气和水。对催化乙醇到乙醛和随后的非催化反应步骤之间相互作用的理解为设计新的和更具选择性的醇氧化催化剂提供了指导原则。