Suppr超能文献

用于协变量偏移校正的低维密度比估计

Low-Dimensional Density Ratio Estimation for Covariate Shift Correction.

作者信息

Stojanov Petar, Gong Mingming, Carbonell Jaime G, Zhang Kun

机构信息

Computer Science Department, Carnegie Mellon University.

University of Pittsburgh, Carnegie Mellon University.

出版信息

Proc Mach Learn Res. 2019 Apr;89:3449-3458.

Abstract

Covariate shift is a prevalent setting for supervised learning in the wild when the training and test data are drawn from different time periods, different but related domains, or via different sampling strategies. This paper addresses a transfer learning setting, with covariate shift between source and target domains. Most existing methods for correcting covariate shift exploit density ratios of the features to reweight the source-domain data, and when the features are high-dimensional, the estimated density ratios may suffer large estimation variances, leading to poor prediction performance. In this work, we investigate the dependence of covariate shift correction performance on the dimensionality of the features, and propose a correction method that finds a low-dimensional representation of the features, which takes into account feature relevant to the target , and exploits the density ratio of this representation for importance reweighting. We discuss the factors affecting the performance of our method and demonstrate its capabilities on both pseudo-real and real-world data.

摘要

协变量转移是一种普遍存在的场景,适用于在自然环境中的监督学习,此时训练数据和测试数据来自不同的时间段、不同但相关的领域,或通过不同的采样策略。本文探讨了一种迁移学习场景,其中源域和目标域之间存在协变量转移。大多数现有的校正协变量转移的方法利用特征的密度比来对源域数据重新加权,而当特征是高维时,估计的密度比可能会有很大的估计方差,从而导致预测性能较差。在这项工作中,我们研究了协变量转移校正性能对特征维度的依赖性,并提出了一种校正方法,该方法找到特征的低维表示,其中考虑了与目标相关的特征,并利用该表示的密度比进行重要性重新加权。我们讨论了影响我们方法性能的因素,并在伪真实数据和真实世界数据上展示了它的能力。

相似文献

4
Covariate shift adaptation for discriminative 3D pose estimation.基于协变量偏移适应的判别式三维姿态估计。
IEEE Trans Pattern Anal Mach Intell. 2014 Feb;36(2):235-47. doi: 10.1109/TPAMI.2013.123.
5
Improving imbalance classification via ensemble learning based on two-stage learning.基于两阶段学习的集成学习改善不平衡分类
Front Comput Neurosci. 2024 Jan 5;17:1296897. doi: 10.3389/fncom.2023.1296897. eCollection 2023.
6
Contrastive Learning Assisted-Alignment for Partial Domain Adaptation.用于部分域适应的对比学习辅助对齐
IEEE Trans Neural Netw Learn Syst. 2023 Oct;34(10):7621-7634. doi: 10.1109/TNNLS.2022.3145034. Epub 2023 Oct 5.
10
Wasserstein Uncertainty Estimation for Adversarial Domain Matching.用于对抗域匹配的瓦瑟斯坦不确定性估计
Front Big Data. 2022 May 10;5:878716. doi: 10.3389/fdata.2022.878716. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验