Suppr超能文献

用于高效水分解和氧还原的镍铁层状双氢氧化物纳米片与单层还原氧化石墨烯的面对面组合构建

The Construction of Face-to-Face Combination between NiFe-layered Double Hydroxide Nanosheets and Monolayer rGO for Efficient Water Splitting and Oxygen Reduction.

作者信息

Liu Daoxin, Yang Yang, Xue Bing, Zhang Dandan, Li Fangfei

机构信息

Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China.

Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 23;16(42):57017-57031. doi: 10.1021/acsami.4c10721. Epub 2024 Oct 9.

Abstract

Developing cost-effective and efficient electrocatalysts is essential for advancing a green energy future. Herein, a NiFe-layered double hydroxide loaded on reduced graphene oxide (NiFe-LDHs@rGO) hybrid was synthesized using a straightforward three-step process involving exfoliation tearing, electrostatic self-assembly, and chemical reduction. The face-to-face packing and ultrathin exfoliation enable strong heterogeneous interactions, fully harnessing the potential of these complementary two-dimensional counterparts. Consequently, the resultant catalyst displays outstanding oxygen evolution reaction (OER) catalytic activity and stability, whose overpotential is as low as 241 mV at 30 mA cm and 255 mV at 50 mA cm with a low Tafel slope of 62.1 mV dec. Both the experimental results and density functional theory (DFT) calculations reveal that the face-to-face assembly strengthens the electronic interactions between NiFe-LDHs and rGO, which effectively modulates the d-band center of Ni and Fesites and improves the reaction kinetics for OER. Moreover, the resultant NiFe-LDHs@rGO hybrids exhibit excellent multifunctional catalytic performance. Its hydrogen evolution reaction (HER) activity is endowed by Fe-site of NiFe-LDHs and defect states rGO and achieves a low voltage of 1.68 V to drive a current density of 10 mA cm for overall water splitting. The face-to-face heteroassembly also imparts NiFe-LDHs@rGO with superior oxygen reduction reaction (ORR) activity, with a half-wave potential of 0.70 V and a limiting current density of 4.2 mA cm. Its ORR primarily follows a four-electron transfer pathway with a minor contribution from a two-electron process. This study establishes the groundwork for optimizing two-dimensional heterogeneous interfaces in LDH@carbon-based materials for advanced energy conversion.

摘要

开发具有成本效益和高效的电催化剂对于推动绿色能源未来至关重要。在此,通过涉及剥离撕裂、静电自组装和化学还原的简单三步工艺合成了负载在还原氧化石墨烯(NiFe-LDHs@rGO)上的镍铁层状双氢氧化物杂化物。面对面堆积和超薄剥离实现了强大的异质相互作用,充分发挥了这些互补二维材料的潜力。因此,所得催化剂表现出出色的析氧反应(OER)催化活性和稳定性,在30 mA cm时过电位低至241 mV,在50 mA cm时为255 mV,塔菲尔斜率低至62.1 mV dec。实验结果和密度泛函理论(DFT)计算均表明面对面组装增强了NiFe-LDHs与rGO之间的电子相互作用,有效调节了Ni和Fe位点的d带中心,改善了OER的反应动力学。此外,所得NiFe-LDHs@rGO杂化物表现出优异的多功能催化性能。其析氢反应(HER)活性由NiFe-LDHs的Fe位点和缺陷态rGO赋予,并实现了1.68 V的低电压以驱动10 mA cm的电流密度用于全水分解。面对面异质组装还赋予NiFe-LDHs@rGO优异的氧还原反应(ORR)活性,半波电位为0.70 V,极限电流密度为4.2 mA cm。其ORR主要遵循四电子转移途径,双电子过程贡献较小。本研究为优化基于LDH@碳材料的二维异质界面以实现先进的能量转换奠定了基础。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验