MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China.
Natural Science Research Center, Academy of Fundamental and Interdisciplinary National Key Laboratory of Science and Technology on Advanced Composites in Special Environments , Harbin Institute of Technology , Harbin , Heilongjiang 150090 , P. R. China.
ACS Appl Mater Interfaces. 2019 Oct 2;11(39):35999-36009. doi: 10.1021/acsami.9b14754. Epub 2019 Sep 20.
Metal-organic framework (MOFs) derived magnetic nanoparticles/porous carbon (M/C) composites featuring efficient interfacial engineering and spatially continuous three-dimensional (3D) networks are desirable electromagnetic wave (EMW) absorbing materials due to multiple transmission path and well impedance matching. However, it is challenging to construct such 3D interconnected carbon networks from a single MOF precursor. Herein, FeNi and N embedded 3D carbon networks comprising bamboo-like carbon nanotubes connected carbon nanorods (FeNi@CNT/CNRs) were prepared via one-step pyrolyzing of the composite of melamine and FeNi-MIL-88B. Attributed to the synergistic contributions of 3D interconnected carbon nanotube networks and MOFs derived M/C for multiple transmission path, impedance matching, and dielectric loss (especially for multiple polarization and micro-current), the FeNi@CNT/CNRs nanoarchitectures have demonstrated superior EMW absorbing performance. In particular, the optimized FeNi@CNT/CNR-0.9 has exhibited strong absorption (-47.0 dB, 2.3 mm in thickness) and broadband effective absorption (4.5 GHz, 1.6 mm in thickness). This attractive strategy holds promise as a general approach to fabricate the carbon hybrid network constituted of MOFs derived nanopolyhedron and CNTs for the target application.
金属-有机骨架(MOFs)衍生的磁性纳米粒子/多孔碳(M/C)复合材料具有高效的界面工程和空间连续的三维(3D)网络,是理想的电磁波(EMW)吸收材料,因为它们具有多种传输路径和良好的阻抗匹配。然而,从单个 MOF 前体制备这样的 3D 互连碳网络是具有挑战性的。在此,通过三聚氰胺和 FeNi-MIL-88B 的复合材料的一步热解,制备了包含竹状碳纳米管连接碳纳米棒的 FeNi 和 N 嵌入的 3D 碳网络(FeNi@CNT/CNRs)。由于 3D 互连碳纳米管网络和 MOFs 衍生的 M/C 对多种传输路径、阻抗匹配和介电损耗(特别是对多种极化和微电流)的协同贡献,FeNi@CNT/CNRs 纳米结构表现出优异的 EMW 吸收性能。特别是,优化后的 FeNi@CNT/CNR-0.9 表现出强吸收(-47.0dB,厚度为 2.3mm)和宽频有效吸收(4.5GHz,厚度为 1.6mm)。这种有吸引力的策略有望成为制备由 MOFs 衍生的纳米多面体和 CNTs 组成的碳杂化网络的通用方法,适用于目标应用。