Suppr超能文献

源自ZIF-8的用于高效微波吸收的分级碳网络复合材料

Hierarchical Carbon Network Composites Derived from ZIF-8 for High-Efficiency Microwave Absorption.

作者信息

Luo Zhongyi, Wang Zhaohao, Liu Jinshuai, Jin Huihui, Han Chunhua, Wang Xuanpeng

机构信息

Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan 430070, China.

School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435003, China.

出版信息

Materials (Basel). 2023 Apr 26;16(9):3380. doi: 10.3390/ma16093380.

Abstract

Metal-organic framework (MOF)-derived composites have gained wide attention due to their specific structures and enhanced performance. In this work, we prepared carbon nanotubes with Fe nanoparticles connected to two-dimensional (2D) hierarchical carbon network composites via a low-pressure gas-solid reaction strategy. Specifically, the three-dimensional (3D) networks derived from ZIF-8 exploited the carbon nanotubes with the function of charge modulation. Meanwhile, we utilized the interconnected 2D nanostructures to optimize impedance matching and facilitate multiple scattering, ultimately improving the overall microwave absorption performance. Furthermore, based on the well-designed structures, the composites prepared at 800 °C (Fe-N-C@CNTs-800) achieved the best reflection loss (RL) of -58.5 dB, thereby obtaining superior microwave absorption performance. Overall, this study provides a good groundwork for further investigation into the modification and dimension design of novel hierarchical microwave absorbers.

摘要

金属有机框架(MOF)衍生的复合材料因其特殊结构和增强性能而受到广泛关注。在本工作中,我们通过低压气固反应策略制备了具有连接到二维(2D)分级碳网络复合材料的铁纳米颗粒的碳纳米管。具体而言,源自ZIF-8的三维(3D)网络利用了具有电荷调制功能的碳纳米管。同时,我们利用相互连接的二维纳米结构来优化阻抗匹配并促进多重散射,最终提高整体微波吸收性能。此外,基于精心设计的结构,在800℃制备的复合材料(Fe-N-C@CNTs-800)实现了-58.5 dB的最佳反射损耗(RL),从而获得了优异的微波吸收性能。总体而言,本研究为进一步研究新型分级微波吸收体的改性和尺寸设计提供了良好的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd6/10180149/fe9ad01c4c59/materials-16-03380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验