School of Mathematical Science, Huaiyin Normal University, Huaian, 223300, P.R. China.
Math Biosci Eng. 2019 May 6;16(5):3988-4006. doi: 10.3934/mbe.2019197.
In this paper, we make a detailed descriptions for the local and global bifurcation structure of nonconstant positive steady states of a modified Holling-Tanner predator-prey system under homogeneous Neumann boundary condition. We first give the stability of constant steady state solution to the model, and show that the system exhibits Turing instability. Second, we establish the local structure of the steady states bifurcating from double eigenvalues by the techniques of space decomposition and implicit function theorem. It is shown that under certain conditions, the local bifurcation can be extended to the global bifurcation.
在本文中,我们详细描述了齐次 Neumann 边界条件下修正的 Holling-Tanner 捕食者-被捕食系统非定常正平衡点的局部和全局分岔结构。首先,我们给出了模型常数平衡点解的稳定性,并证明了系统存在 Turing 不稳定性。其次,我们利用空间分解和隐函数定理的技术建立了从重特征值分叉的定态的局部结构。结果表明,在某些条件下,局部分岔可以扩展到全局分岔。