Facultad de Física, Universidad Veracruzana, Circuito Aguirre Beltrán s/n, Xalapa, Veracruz 91000, Mexico.
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. Postal 70-543, C.P. 04510 Cd. Mx., Mexico.
Phys Rev E. 2019 Jul;100(1-1):012218. doi: 10.1103/PhysRevE.100.012218.
Quantum systems whose classical counterparts are chaotic typically have highly correlated eigenvalues and level statistics that coincide with those from ensembles of full random matrices. A dynamical manifestation of these correlations comes in the form of the so-called correlation hole, which is a dip below the saturation point of the survival probability's time evolution. In this work, we study the correlation hole in the spin-boson (Dicke) model, which presents a chaotic regime and can be realized in experiments with ultracold atoms and ion traps. We derive an analytical expression that describes the entire evolution of the survival probability and allows us to determine the time scales of its relaxation to equilibrium. This expression shows remarkable agreement with our numerical results. While the initial decay and the time to reach the minimum of the correlation hole depend on the initial state, the dynamics beyond the hole up to equilibration is universal. We find that the relaxation time of the survival probability for the Dicke model increases linearly with system size.
量子系统的经典对应物如果是混沌的,通常具有高度相关的本征值和能级统计,与完全随机矩阵的集合相符。这些相关性的一个动力学表现形式是所谓的相关空洞,它是在生存概率时间演化的饱和点以下的一个凹陷。在这项工作中,我们研究了自旋-玻色子(狄克)模型中的相关空洞,该模型呈现出混沌状态,可以在超冷原子和离子阱实验中实现。我们推导出了一个描述整个生存概率演化的解析表达式,允许我们确定其弛豫到平衡的时间尺度。该表达式与我们的数值结果具有显著的一致性。虽然初始衰减和达到相关空洞最小值的时间取决于初始状态,但空洞之外直到平衡的动力学是普遍的。我们发现,狄克模型的生存概率弛豫时间随系统尺寸线性增加。