School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.
Moyne Institute of Preventive Medicine, Department of Microbiology, Trnity College Dublin, Dublin, Ireland.
BMC Bioinformatics. 2019 Sep 10;20(1):466. doi: 10.1186/s12859-019-3042-8.
Although many of the genic features in Mycobacterium abscessus have been fully validated, a comprehensive understanding of the regulatory elements remains lacking. Moreover, there is little understanding of how the organism regulates its transcriptomic profile, enabling cells to survive in hostile environments. Here, to computationally infer the gene regulatory network for Mycobacterium abscessus we propose a novel statistical computational modelling approach: BayesIan gene regulatory Networks inferreD via gene coExpression and compaRative genomics (BINDER). In tandem with derived experimental coexpression data, the property of genomic conservation is exploited to probabilistically infer a gene regulatory network in Mycobacterium abscessus.Inference on regulatory interactions is conducted by combining 'primary' and 'auxiliary' data strata. The data forming the primary and auxiliary strata are derived from RNA-seq experiments and sequence information in the primary organism Mycobacterium abscessus as well as ChIP-seq data extracted from a related proxy organism Mycobacterium tuberculosis. The primary and auxiliary data are combined in a hierarchical Bayesian framework, informing the apposite bivariate likelihood function and prior distributions respectively. The inferred relationships provide insight to regulon groupings in Mycobacterium abscessus.
We implement BINDER on data relating to a collection of 167,280 regulator-target pairs resulting in the identification of 54 regulator-target pairs, across 5 transcription factors, for which there is strong probability of regulatory interaction.
The inferred regulatory interactions provide insight to, and a valuable resource for further studies of, transcriptional control in Mycobacterium abscessus, and in the family of Mycobacteriaceae more generally. Further, the developed BINDER framework has broad applicability, useable in settings where computational inference of a gene regulatory network requires integration of data sources derived from both the primary organism of interest and from related proxy organisms.
尽管分枝杆菌属脓肿中的许多基因特征已经得到充分验证,但对调节元件的全面了解仍然缺乏。此外,人们对生物体如何调节其转录组谱以使其能够在恶劣环境中生存知之甚少。在这里,为了计算推断分枝杆菌属脓肿的基因调控网络,我们提出了一种新的统计计算建模方法:基于基因共表达和比较基因组学的贝叶斯基因调控网络推断(BINDER)。与衍生的实验共表达数据相结合,利用基因组保守性的特性,可以概率推断分枝杆菌属脓肿中的基因调控网络。通过结合“主要”和“辅助”数据层来推断调控相互作用。构成主要和辅助层的数据源自 RNA-seq 实验以及原始生物体分枝杆菌属脓肿中的序列信息,以及从相关代理生物体结核分枝杆菌中提取的 ChIP-seq 数据。主要和辅助数据在分层贝叶斯框架中结合,分别为适当的双变量似然函数和先验分布提供信息。推断出的关系为分枝杆菌属脓肿中的调控群提供了深入了解。
我们在与 167280 对调节剂-靶标对相关的数据上实施了 BINDER,结果确定了 54 对调节剂-靶标对,涉及 5 个转录因子,这些转录因子之间存在强烈的调控相互作用的可能性。
推断出的调控相互作用为进一步研究分枝杆菌属的转录控制以及更广泛的分枝杆菌科提供了深入了解和有价值的资源。此外,开发的 BINDER 框架具有广泛的适用性,可用于需要整合源自感兴趣的原始生物体和相关代理生物体的数据源的基因调控网络的计算推断的情况。