Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19362-19367. doi: 10.1073/pnas.1904770116. Epub 2019 Sep 9.
Circulating exosomal microRNA (miR) represents a new class of blood-based biomarkers for cancer liquid biopsy. The detection of miR at a very low concentration and with single-base discrimination without the need for sophisticated equipment, large volumes, or elaborate sample processing is a challenge. To address this, we present an approach that is highly specific for a target miR sequence and has the ability to provide "digital" resolution of individual target molecules with high signal-to-noise ratio. Gold nanoparticle tags are prepared with thermodynamically optimized nucleic acid toehold probes that, when binding to a target miR sequence, displace a probe-protecting oligonucleotide and reveal a capture sequence that is used to selectively pull down the target-probe-nanoparticle complex to a photonic crystal (PC) biosensor surface. By matching the surface plasmon-resonant wavelength of the nanoparticle tag to the resonant wavelength of the PC nanostructure, the reflected light intensity from the PC is dramatically and locally quenched by the presence of each individual nanoparticle, enabling a form of biosensor microscopy that we call Photonic Resonator Absorption Microscopy (PRAM). Dynamic PRAM imaging of nanoparticle tag capture enables direct 100-aM limit of detection and single-base mismatch selectivity in a 2-h kinetic discrimination assay. The PRAM assay demonstrates that ultrasensitivity (<1 pM) and high selectivity can be achieved on a direct readout diagnostic.
循环外泌体 microRNA (miRNA) 代表了癌症液体活检的一类新的基于血液的生物标志物。检测非常低浓度的 miRNA 并具有单碱基分辨能力,而无需复杂的设备、大量的体积或繁琐的样品处理是一个挑战。为了解决这个问题,我们提出了一种方法,该方法对靶 miRNA 序列具有高度特异性,并且能够提供具有高信噪比的单个靶分子的“数字”分辨率。金纳米粒子标记物是用热力学优化的核酸 toehold 探针制备的,当与靶 miRNA 序列结合时,会取代探针保护寡核苷酸,并揭示出一个捕获序列,该序列用于选择性地将靶-探针-纳米粒子复合物拉下到光子晶体 (PC) 生物传感器表面。通过将纳米粒子标记物的表面等离子体共振波长与 PC 纳米结构的共振波长相匹配,来自 PC 的反射光强度会因每个纳米粒子的存在而显著且局部地猝灭,从而实现了一种我们称之为光子共振器吸收显微镜 (PRAM) 的生物传感器显微镜形式。纳米粒子标记物捕获的动态 PRAM 成像可在 2 小时动力学区分测定中实现直接 100-aM 的检测限和单碱基错配选择性。PRAM 测定表明,在直接读出诊断中可以实现超灵敏度 (<1 pM) 和高选择性。