Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Analyst. 2014 Mar 7;139(5):1007-15. doi: 10.1039/c3an02295a. Epub 2014 Jan 16.
We demonstrate a label-free biosensor imaging approach that utilizes a photonic crystal (PC) surface to detect surface attachment of individual dielectric and metal nanoparticles through measurement of localized shifts in the resonant wavelength and resonant reflection magnitude from the PC. Using a microscopy-based approach to scan the PC resonant reflection properties with 0.6 μm spatial resolution, we show that metal nanoparticles attached to the biosensor surface with strong absorption at the resonant wavelength induce a highly localized reduction in reflection efficiency and are able to be detected by modulation of the resonant wavelength. Experimental demonstrations of single-nanoparticle imaging are supported by finite-difference time-domain computer simulations. The ability to image surface-adsorption of individual nanoparticles offers a route to single molecule biosensing, in which the particles can be functionalized with specific recognition molecules and utilized as tags.
我们展示了一种无标记的生物传感器成像方法,该方法利用光子晶体(PC)表面通过测量 PC 的共振波长和共振反射幅度的局部位移来检测单个介电和金属纳米粒子的表面附着。使用基于显微镜的方法以 0.6μm 的空间分辨率扫描 PC 共振反射特性,我们表明,在共振波长处具有强吸收的附着在生物传感器表面的金属纳米粒子会导致反射效率的高度局部降低,并能够通过共振波长的调制来检测。通过有限差分时域计算机模拟支持了单个纳米粒子成像的实验演示。单个纳米粒子表面吸附的成像能力为单分子生物传感提供了一种途径,其中可以将粒子功能化具有特定识别分子,并用作标记。