Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19490-19499. doi: 10.1073/pnas.1912459116. Epub 2019 Sep 9.
The expression profiles and spatial distributions of RNAs regulate many cellular functions. Image-based transcriptomic approaches provide powerful means to measure both expression and spatial information of RNAs in individual cells within their native environment. Among these approaches, multiplexed error-robust fluorescence in situ hybridization (MERFISH) has achieved spatially resolved RNA quantification at transcriptome scale by massively multiplexing single-molecule FISH measurements. Here, we increased the gene throughput of MERFISH and demonstrated simultaneous measurements of RNA transcripts from ∼10,000 genes in individual cells with ∼80% detection efficiency and ∼4% misidentification rate. We combined MERFISH with cellular structure imaging to determine subcellular compartmentalization of RNAs. We validated this approach by showing enrichment of secretome transcripts at the endoplasmic reticulum, and further revealed enrichment of long noncoding RNAs, RNAs with retained introns, and a subgroup of protein-coding mRNAs in the cell nucleus. Leveraging spatially resolved RNA profiling, we developed an approach to determine RNA velocity in situ using the balance of nuclear versus cytoplasmic RNA counts. We applied this approach to infer pseudotime ordering of cells and identified cells at different cell-cycle states, revealing ∼1,600 genes with putative cell cycle-dependent expression and a gradual transcription profile change as cells progress through cell-cycle stages. Our analysis further revealed cell cycle-dependent and cell cycle-independent spatial heterogeneity of transcriptionally distinct cells. We envision that the ability to perform spatially resolved, genome-wide RNA profiling with high detection efficiency and accuracy by MERFISH could help address a wide array of questions ranging from the regulation of gene expression in cells to the development of cell fate and organization in tissues.
RNA 的表达谱和空间分布调节许多细胞功能。基于图像的转录组学方法提供了强大的手段,可在其天然环境中测量单个细胞内 RNA 的表达和空间信息。在这些方法中,多重抗错荧光原位杂交(MERFISH)通过大规模多重单分子 FISH 测量实现了转录组规模的 RNA 定量的空间分辨。在这里,我们提高了 MERFISH 的基因通量,并证明了在单个细胞中同时测量约 10000 个基因的 RNA 转录物,检测效率约为 80%,错误识别率约为 4%。我们将 MERFISH 与细胞结构成像相结合,以确定 RNA 的亚细胞区室化。我们通过显示内质网中分泌体转录物的富集来验证这种方法,进一步揭示了长非编码 RNA、保留内含子的 RNA 以及核内蛋白编码 mRNA 的一个亚组的富集。利用空间分辨的 RNA 分析,我们开发了一种使用核内与细胞质 RNA 计数之间的平衡来确定原位 RNA 速度的方法。我们应用此方法推断细胞的拟时顺序,并识别处于不同细胞周期状态的细胞,发现约 1600 个具有潜在细胞周期依赖性表达的基因,以及随着细胞通过细胞周期阶段进展而出现的转录谱逐渐变化。我们的分析进一步揭示了转录上不同的细胞的细胞周期依赖性和非依赖性空间异质性。我们设想,MERFISH 具有以高检测效率和准确性进行空间分辨、全基因组 RNA 分析的能力,有助于解决从细胞中基因表达的调控到组织中细胞命运和组织的发展等广泛的问题。