Yu Huasheng, Carroll Anna Yao, Shen Kevin, Wu Nathan, Yan Hanying, Xiong Jingwei, Mercado Miguel Francisco, Kaiser Eric A, Gautam Mayank, Li Mingyao, Luo Wenqin
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
Departments of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
bioRxiv. 2025 Aug 29:2025.08.25.672145. doi: 10.1101/2025.08.25.672145.
Probe-based hybridization spatial transcriptomics has emerged as a state-of-the-art for neuroscience research. Accurate segmentation of neurons and non-neuronal cells, a critical step for downstream analysis, remains a big challenge. Using human sensory ganglia neurons as an example, we systematically explore this problem. We evaluated multiple automatic segmentation approaches using quantitative performance metrics and downstream results. We show that careful parameter tuning is essential for achieving accurate segmentation; however, even with optimized parameters, different models still yield distinct classes of errors. To mitigate these errors, we propose a manual quality check, which can validate and refine automated segmentation results. As a future direction, integrating multi-modal imaging data with tailored neural networks may further improve segmentation accuracy. In summary, our results argue that each automated segmentation method has distinct strengths, weaknesses, and characteristic error patterns; and that a manual review is necessary.
基于探针的杂交空间转录组学已成为神经科学研究的一项前沿技术。神经元和非神经元细胞的精确分割是下游分析的关键步骤,但仍然是一个巨大的挑战。以人类感觉神经节神经元为例,我们系统地探讨了这个问题。我们使用定量性能指标和下游结果评估了多种自动分割方法。我们表明,仔细的参数调整对于实现精确分割至关重要;然而,即使参数经过优化,不同的模型仍然会产生不同类型的错误。为了减轻这些错误,我们提出了一种人工质量检查方法,它可以验证和完善自动分割结果。作为未来的一个方向,将多模态成像数据与定制的神经网络相结合可能会进一步提高分割精度。总之,我们的结果表明,每种自动分割方法都有不同的优点、缺点和特征性错误模式;并且人工审核是必要的。