Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States.
Joint Center for Energy Storage Research (JCESR) , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States.
J Am Chem Soc. 2019 Sep 25;141(38):15301-15306. doi: 10.1021/jacs.9b07345. Epub 2019 Sep 10.
Nonaqueous redox flow batteries (RFBs) represent a promising technology for grid-scale energy storage. A key challenge for the field is identifying molecules that undergo reversible redox reactions at the extreme potentials required to leverage the large potential window of organic solvents. In this Article, we use a combination of computations, chemical synthesis, and mechanistic analysis to develop thioether-substituted cyclopropenium derivatives as high potential electrolytes for nonaqueous RFBs. These molecules exhibit redox potentials that are 470-500 mV higher than those of known electrolytes. Strategic variation of the alkyl substituent on sulfur afforded a derivative that undergoes charge-discharge cycling at +1.33 V vs ferrocene/ferrocenium in acetonitrile/tetrabutylammonium hexafluorophosphate. This electrolyte was paired with a phthalimide derivative to achieve a proof-of-principle 3.2 V all-organic RFB.
非水相氧化还原流电池 (RFB) 是一种很有前途的电网规模储能技术。该领域的一个关键挑战是确定在有机溶剂大电势窗口下所需的极端电势下能够进行可逆氧化还原反应的分子。在本文中,我们使用计算、化学合成和机理分析的组合,开发了硫醚取代的环丙烯鎓衍生物作为非水相 RFB 的高电势电解质。这些分子的氧化还原电位比已知电解质高出 470-500 mV。硫上的烷基取代基的策略性变化提供了一种衍生物,该衍生物在乙腈/四丁基六氟磷酸铵中以 +1.33 V 相对于 ferrocene/ferrocenium 进行充放电循环。该电解质与邻苯二甲酰亚胺衍生物配对,实现了 3.2 V 的全有机 RFB 原理验证。